def create_xy_train(self, tag_file, embedding_file, data_size=1, window_size=5, available_tags=[], suffix=None, mode="create", load=None): DataUtils.message("Prepearing Training Data...", new=True) if mode == "create" or mode == "save": x_train, y_train = self.__create_xy(tag_file, embedding_file, data_size, window_size, available_tags, suffix) if mode == "save": DataUtils.save_array( DataUtils.get_filename("SFF", "X_TRAIN" + "_" + str(window_size)), x_train) DataUtils.save_array( DataUtils.get_filename("SFF", "Y_TRAIN" + "_" + str(window_size)), y_train) if mode == "load" and load is not None: x_train = DataUtils.load_array(load[0]) y_train = DataUtils.load_array(load[1]) self.x_train = np.array(x_train) self.y_train = np.array(y_train) self.INPUT_SHAPE = self.x_train.shape self.OUTPUT_SHAPE = self.y_train.shape
def create_xy_test(self, embedding_file, data_size=1, look_back=0, mode="create", load=None): DataUtils.message("Prepearing Test Data...", new=True) if mode == "create" or mode == "save": word_test, head_test, tag_test = self.__create_xy(embedding_file, data_size, look_back, test=True) if mode == "save": DataUtils.save_array( DataUtils.get_filename("DP_W", "TEST" + "_" + str(look_back)), word_test) DataUtils.save_array( DataUtils.get_filename("DP_H", "TEST" + "_" + str(look_back)), head_test) DataUtils.save_array( DataUtils.get_filename("DP_T", "TEST" + "_" + str(look_back)), tag_test) if mode == "load" and load is not None: word_test = DataUtils.load_array(load[0]) head_test = DataUtils.load_array(load[1]) tag_test = DataUtils.load_array(load[2]) self.word_test = np.array(word_test) self.head_test = np.array(head_test) self.tag_test = np.array(tag_test)
def create_xy_test(self, tag_file, embedding_file, data_size=1, window_size=5, available_tags=[], suffix=None, mode="create", load=None): DataUtils.message("Prepearing Test Data...", new=True) if mode == "create" or mode == "save": x_test, y_test = self.__create_xy(tag_file, embedding_file, data_size, window_size, available_tags, suffix) if mode == "save": DataUtils.save_array( DataUtils.get_filename("SFF", "X_TEST" + "_" + str(window_size)), x_test) DataUtils.save_array( DataUtils.get_filename("SFF", "Y_TEST" + "_" + str(window_size)), y_test) if mode == "load" and load is not None: x_test = DataUtils.load_array(load[0]) y_test = DataUtils.load_array(load[1]) self.x_test = np.array(x_test) self.y_test = np.array(y_test)
def create_xy_train(self, tag_file, embedding_file, data_size=1, look_back=5, threshold=0, suffix=None, mode="create", load=None): DataUtils.message("Prepearing Training Data...", new=True) if mode == "create" or mode == "save": x_train, y_train = self.__create_xy_train(tag_file, embedding_file, data_size, look_back, threshold, suffix) if mode == "save": DataUtils.save_array( DataUtils.get_filename("ULSTM_X", "TRAIN" + "_" + str(look_back)), x_train) DataUtils.save_array( DataUtils.get_filename("ULSTM_Y", "TRAIN" + "_" + str(look_back)), y_train) if mode == "load" and load is not None: x_train = DataUtils.load_array(load[0]) y_train = DataUtils.load_array(load[1]) self.x_train = x_train self.y_train = y_train self.INPUT_SHAPE = x_train.shape self.OUTPUT_SHAPE = y_train.shape
def create_xy_test(self, tag_file, embedding_file, data_size=1, look_back=5, suffix=None, mode="create", load=None): DataUtils.message("Prepearing Test Data...", new=True) if mode == "create" or mode == "save": x_test, y_test = self.__create_xy_test(tag_file, embedding_file, data_size, look_back, suffix) if mode == "save": DataUtils.save_array( DataUtils.get_filename("ULSTM_X", "TEST" + "_" + str(look_back)), x_test) DataUtils.save_array( DataUtils.get_filename("ULSTM_Y", "TEST" + "_" + str(look_back)), y_test) if mode == "load" and load is not None: x_test = DataUtils.load_array(load[0]) y_test = DataUtils.load_array(load[1]) self.x_test = np.array(x_test) self.y_test = np.array(y_test)
def plot(self, note=""): DataUtils.message("Ploting Model...", new=True) directory = "plot/" DataUtils.create_dir(directory) file = DataUtils.get_filename("UFF", note)+".png" plot_model(self.model, to_file=directory+file, show_shapes=True, show_layer_names=False)
def save(self, note=""): DataUtils.message("Saving Model...", new=True) directory = "weights/" DataUtils.create_dir(directory) file = DataUtils.get_filename("UFF", note)+".h5" self.model.save(directory+file)
def create_xy_train(self, dependency_tree, embedding_file, data_size=1, look_back=0, mode="create", load=None): DataUtils.message("Prepearing Training Data...", new=True) if mode == "create" or mode == "save": word_train, head_train, tag_train = self.__create_xy( dependency_tree, embedding_file, data_size, look_back, test=False) if mode == "save": DataUtils.save_array( DataUtils.get_filename("DP_W", "TRAIN" + "_" + str(look_back)), word_train) DataUtils.save_array( DataUtils.get_filename("DP_H", "TRAIN" + "_" + str(look_back)), head_train) DataUtils.save_array( DataUtils.get_filename("DP_T", "TRAIN" + "_" + str(look_back)), tag_train) if mode == "load" and load is not None: word_train = DataUtils.load_array(load[0]) head_train = DataUtils.load_array(load[1]) tag_train = DataUtils.load_array(load[2]) self.word_train = np.array(word_train) self.head_train = np.array(head_train) self.tag_train = np.array(tag_train)
def plot(self, note=""): DataUtils.message("Ploting Model...", new=True) plot_model(self.model, to_file=DataUtils.get_filename("DP", note) + ".png", show_shapes=True, show_layer_names=False)
def save(self, note=""): DataUtils.message("Saving Model...", new=True) self.model.save(DataUtils.get_filename("DP", note) + ".h5")