def TSNE_Gist(name, csvfilename): idsT = imagesHandler.get_all_img_ids() ids = [] for id in idsT: ids.append(str(id[0])) print ids gistVals = util.loadCSV(csvfilename) X = np.array(gistVals) model = TSNE(n_components=2, random_state=0) tsne_vals = model.fit_transform(X) tsneHandler.storeTsneValsWIds(name, tsne_vals, ids) return tsne_vals, ids
def TSNE_sift(name): conn = sqlite3.connect(dirm.sqlite_file) c = conn.cursor() dist = sift_cb_handler.get_distributions() X_Ids = [] X_data = [] for d in dist: x_id = d[0] x_data = d[1:] X_Ids.append(x_id) X_data.append(x_data) X_data = np.array(X_data) model = TSNE(n_components=2) tsne_x = model.fit_transform(X_data) tsneHandler.storeTsneValsWIds(name, tsne_x, X_Ids) return tsne_x, X_Ids
def TSNE_General(tablename): conn = sqlite3.connect(dirm.sqlite_file) c = conn.cursor() cmd = "SELECT * FROM {tn}".format(tn=tablename) c.execute(cmd) all_rows = c.fetchall() ids = [] data = [] for row in all_rows: ids.append(str(row[0])) data.append(row[1:]) X = np.array(data) model = TSNE(n_components=2, random_state=0) tsne_vals = model.fit_transform(X) tsneHandler.storeTsneValsWIds(tablename, tsne_vals, ids) return tsne_vals, ids
def TSNE_General(tablename): conn = sqlite3.connect(dirm.sqlite_file) c = conn.cursor() cmd = 'SELECT * FROM {tn}'.format(tn=tablename) c.execute(cmd) all_rows = c.fetchall() ids = [] data = [] for row in all_rows: ids.append(str(row[0])) data.append(row[1:]) X = np.array(data) model = TSNE(n_components=2, random_state=0) tsne_vals = model.fit_transform(X) tsneHandler.storeTsneValsWIds(tablename, tsne_vals, ids) return tsne_vals, ids