def predictresult(models, traindatestart, traindateend, testdateend): data = readdata() don, need_train_data = usercluseter(data) train_data, don_not_have_before = xandy( need_train_data, traindatestart, traindateend, testdateend) pymid_and_ys = testp(models, train_data) ty = onetimeintveraldata(data, traindateend, testdateend) a = pd.merge(pymid_and_ys[0], pymid_and_ys[1], left_index=True, right_index=True, how="outer") b = pd.merge( a, pymid_and_ys[2], left_index=True, right_index=True, how="outer") py = b.fillna(0) pyy = ty.copy(deep=True) print id(pyy), id(ty) # print py.ix[:, :] # sys, exit() mindex = pyy["mid"].isin(py.index) pyy.loc[ mindex, ["forward_count", "comment_count", "like_count"]] = py.values[3:6] # print pyy.loc[~mindex, ["forward_count", "comment_count", "like_count"]] pyy.loc[~mindex, ["forward_count", "comment_count", "like_count"]] = 0 f = pyy.values[:, 3:6] t = ty.values[:, 3:6] print f, t print scores(f, t)
ty = onetimeintveraldata(data, traindateend, testdateend) a = pd.merge(pymid_and_ys[0], pymid_and_ys[1], left_index=True, right_index=True, how="outer") b = pd.merge( a, pymid_and_ys[2], left_index=True, right_index=True, how="outer") py = b.fillna(0) pyy = ty.copy(deep=True) print id(pyy), id(ty) # print py.ix[:, :] # sys, exit() mindex = pyy["mid"].isin(py.index) pyy.loc[ mindex, ["forward_count", "comment_count", "like_count"]] = py.values[3:6] # print pyy.loc[~mindex, ["forward_count", "comment_count", "like_count"]] pyy.loc[~mindex, ["forward_count", "comment_count", "like_count"]] = 0 f = pyy.values[:, 3:6] t = ty.values[:, 3:6] print f, t print scores(f, t) # return pyy, ty if __name__ == '__main__': data = readdata() # print type(data) traindatestart, traindateend, testdateend = "2014-08-01", "2014-09-01", "2014-10-01"