コード例 #1
0
def is_point_partof_met(point):

    point_is_partof_met = False

    point_as_list = [point]

    for met in mets_of_all_patches:

        met_center = met['location']['center']
        distance = blobanalysis.point_dist(met_center, point)
        if distance > ROI_width: continue

        points_of_met_rel = met['points']
        patchID_of_patch_of_met = met['patch_id']
        patch_of_met = dc.filter_dicts(whole_scan_metadata['patches'], 'id',
                                       patchID_of_patch_of_met)[0]
        offset_of_patch_of_met = patch_of_met['offset']
        points_of_met = np.add(points_of_met_rel,
                               offset_of_patch_of_met).tolist()
        point_is_partof_met = blobanalysis.test_overlap(
            point_as_list, points_of_met)
        if point_is_partof_met:
            print('Point ' + str(point) + ' is part of met ' +
                  str(met['global_id']))
            break

    return point_is_partof_met
コード例 #2
0
def get_patch_ID_given_offset(offset):

    offset = np.array(offset, dtype=np.int64)
    patches = dc.filter_dicts(whole_scan_metadata['patches'], 'offset', offset)
    patch = patches[0]
    patch_ID = patch['id']

    return patch_ID
コード例 #3
0
def get_whole_mouse_thumbnail(candidate_ID):
    current_metastasis = get_current_metastasis(candidate_ID)
    patch_ID = current_metastasis['patch_id']
    patches = region['patches']
    patch = dataconversions.filter_dicts(patches, 'id', patch_ID)[0]
    patchstep = patch['patchstep']
    z_patchstep = patchstep[2]
    whole_mouse_thumbnail = whole_mouse_thumbnails[:, :, z_patchstep]
    return whole_mouse_thumbnail
コード例 #4
0
def get_lower_left_corner(candidate_ID):
    current_metastasis = get_current_metastasis(candidate_ID)
    patch_ID = current_metastasis['patch_id']
    patches = region['patches']
    patch = dataconversions.filter_dicts(patches, 'id', patch_ID)[0]
    patchstep = patch['patchstep']
    lower_left_x = patchstep[1] * 30
    lower_left_y = patchstep[0] * 30
    lower_left_corner = (lower_left_x, lower_left_y)
    return lower_left_corner
コード例 #5
0
ファイル: classify_sample.py プロジェクト: olikugel/PMSD_code
def pick_sample():

    samplecards = filehandling.pload(DATAPATH + '/mice_metadata/' + 'list_of_samplecards.pickledump')

    mice = ['H2030IC10dn573','IC2dn2','IC6dn1','IC6dn2', 'IC14dn1', 'MCF7IC21dn528', 'PC14dn04595']
    print()
    print("Please choose a mouse:")
    for m in enumerate(mice):
        print('[', m[0], ']', ' ', m[1])
    chosen_index = input('--> ')
    mouse = mice[int(chosen_index)]

    print()
    print("What's the patch ID?")
    patch_ID = input("--> ")
    patch_ID = int(patch_ID)

    print()
    print("What's the metastasis ID?")
    met_ID = input("--> ")
    met_ID = int(met_ID)

    samplecards_mouse = dataconversions.filter_dicts(samplecards, 'mouse', mouse)
    samplecards_patch = dataconversions.filter_dicts(samplecards_mouse, 'patch_id', patch_ID)
    samplecards_met   = dataconversions.filter_dicts(samplecards_patch, 'met_id', met_ID)
    chosen_samplecard = samplecards_met

    if chosen_samplecard:
        print()
        print('Chosen sample:')
        print(chosen_samplecard)
        print()

        sample_set = MetDataset(chosen_samplecard)

        sample_loader = DataLoader(sample_set)

        for i, (images, label) in enumerate(sample_loader):
            return images
    else:
        return None
コード例 #6
0
def is_met_in_ROI(met, ROI, ROI_center, is_ambig_met=False):

    met_is_in_ROI = False

    met_center = met['location']['center']
    distance = blobanalysis.point_dist(met_center, ROI_center)
    met_descr_string = 'Ambig-Met' if is_ambig_met else 'Met'
    met_descr_string += ' ' + str(met['id']) + ' of Patch ' + str(
        met['patch_id'])

    # is
    if distance < ROI_width_half:
        met_is_in_ROI = True

    # is or isn't
    elif distance < (sqrt(3) * ROI_width_half + tolerance):
        points_of_met_rel = met[
            'points']  # pointlist of all points of met, relative to patch
        patchID_of_patch_of_met = met['patch_id']
        patch_of_met = dc.filter_dicts(whole_scan_metadata['patches'], 'id',
                                       patchID_of_patch_of_met)[0]
        offset_of_patch_of_met = patch_of_met['offset']
        points_of_met = np.add(
            points_of_met_rel, offset_of_patch_of_met).tolist(
            )  # pointlist of all points of met, abs. positions
        points_of_ROI = get_points_of_ROI(
            ROI, ROI_center)  # pointlist of all points of ROI, abs. positions
        # overlap_points = blobanalysis.get_overlap(points_of_met, points_of_ROI)
        met_is_in_ROI = blobanalysis.test_overlap(points_of_met, points_of_ROI)

    # isn't
    else:
        met_is_in_ROI = False

    # if met_is_in_ROI: print(met_descr_string + ' is within ROI')

    return met_is_in_ROI
コード例 #7
0
def load_segmentation(dataset, pid, load_partial, THR_dim=200):
    '''
    segmentation = load_segmentation(dataset,pid,load_partial,THR_dim=200)
    
    Not only loads segmentation file for desired patch, but also includes all (dim) metastases
    that belong to adjacent patches if they partially overlap with this patch. 
    
    For those cases, only the overlapping part of the metastasis is included, i.e. this function 
    may NOT BE USED to derive statistical information on the metastases as this will be false 
    for exactly those partial metastases.
    
    Also, if the part within the patch is small (less than 20% of total volume) or dim, it will
    only be included as a "dim" metastasis, i.e. detection will not be rewarded and missing it
    will not be punished; these metastases will have to be detected from the patch in which the
    majority of its volume is in
    
    Inputs:
     - dataset: string specifying dataset ("F15")
     - pid: integer for patch ID to be loaded
     - load_partial: boolean whether or not to load partially overlapping blobs from surrounding patches
     - THR_dim: threshold to check whether partial blobs are now considered dim because brighter parts are in other patch
    '''
    seg = filehandling.pload(BASEP + 'data/' + dataset +
                             '/segmentations/segmentation_patch_' + str(pid))
    if (os.path.isfile('/mnt/C286054386053985/oschoppe/F15/patchvolume_' +
                       str(pid) + '.nii') == False):
        print(
            'WARNING: cannot load local patch files and thus, cannot consider partial blobs properly.'
        )
        print(
            '--> function load_segmentation() will be called with load_partial=False instead'
        )
        print('ALTERED PATHS IN p_leo2 AND ALL HELPER FUNCTIONS!')
        load_partial = False
    if (load_partial):
        region = filehandling.pload(BASEP + 'data/' + dataset + '/region')
        [maxy, maxx,
         maxz] = np.asarray(region['partitioning']['patch_size']
                            ) - region['partitioning']['patch_overlap']
        [y0, x0, z0] = region['patches'][pid]['patchstep']
        cancervol = filehandling.readNifti(
            '/mnt/C286054386053985/oschoppe/F15/patchvolume_' + str(pid))
        add_part_metastases = []
        add_part_dim_metastases = []
        # Go through neighboring patches whose buffer zones overlap with patch
        for dy in [-1, 0]:
            for dx in [-1, 0]:
                for dz in [-1, 0]:
                    [y, x, z] = [y0 + dy, x0 + dx, z0 + dz]
                    if ((y >= 0 and x >= 0 and z >= 0)
                            and ((y == y0 and x == x0 and z == z0) is False)):
                        npid = dataconversions.filter_dicts(
                            region['patches'], 'patchstep', [y, x, z])[0]['id']
                        nseg = filehandling.pload(
                            BASEP + 'data/' + dataset +
                            '/segmentations/segmentation_patch_' + str(npid))
                        # check whether any metastases overlap with patch
                        dim_metastases = [] if (
                            'dim_metastases'
                            not in nseg.keys()) else nseg['dim_metastases']
                        for m in nseg['metastases'] + dim_metastases:
                            abs_bb = m['offset'] + m['boundingbox']
                            if ((abs_bb[0] >= (-1) * dy * maxy)
                                    and (abs_bb[1] >= (-1) * dx * maxx)
                                    and (abs_bb[2] >= (-1) * dz * maxz)):
                                # if so, then include THOSE points WITHIN the patch & adjust coordinate system to new patch
                                patchstep_offset = np.multiply(
                                    [maxy, maxx, maxz], [dy, dx, dz])
                                shifted_points = m['points'] + patchstep_offset
                                filtered_points = shifted_points[
                                    np.min(shifted_points, axis=1) >=
                                    0]  # only take points fully within patch
                                if (len(filtered_points) > 0):
                                    # characterize new partial blob
                                    m_partial = {}
                                    m_partial['id'] = 100 * npid + m['id']
                                    m_partial[
                                        'points'] = filtered_points.tolist()
                                    m_partial = blobanalysis.characterize_blob(
                                        m_partial)  # ~ 0.1 s
                                    m_partial = characterize_metastasis(
                                        m_partial,
                                        cancervol,
                                        min_padding=25,
                                        otherblobs=seg['metastases']
                                    )  # ~ 0.01 s
                                    # add to main list if NOT dim and at least 20% within patch
                                    if (m_partial['characterization']['maxFG']
                                            > THR_dim and m_partial['volume']
                                            >= 0.2 * m['volume']):
                                        m_partial[
                                            'INFO'] = 'Partial, but substantial metastases from adjacent patch #' + str(
                                                npid)
                                        add_part_metastases.append(m_partial)
                                    else:
                                        m_partial['evaluation'][
                                            'flag_dim'] = True
                                        m_partial[
                                            'INFO'] = 'Partial, but dim/very small part of metastases from adjacent patch #' + str(
                                                npid)
                                        add_part_dim_metastases.append(
                                            m_partial)
        seg['metastases'] += add_part_metastases
        if ('dim_metastases' in seg.keys()):
            seg['dim_metastases'] += add_part_dim_metastases

    return seg
コード例 #8
0
    fileToWriteTo = filepath + filename
    plt.imsave(fileToWriteTo, MIP_x, format='png')

    MIP_z = np.max(ROI, 2)  # maximum intensity projection along z
    axis = 'z'
    filename = filename_prefix + '_' + axis + '.png'
    fileToWriteTo = filepath + filename
    plt.imsave(fileToWriteTo, MIP_z, format='png')

#%% Main

for mouse in mice:
    prediction = filehandling.pload(DATAPATH + '/mice_metadata/' + mouse +
                                    '/reviewed_prediction.pickledump')
    candidates = prediction['metastases']
    potential_TPs = dataconversions.filter_dicts(
        candidates, 'evaluation-manually_confirmed', True)
    confirmed_FPs = dataconversions.filter_dicts(
        candidates, 'evaluation-manually_confirmed', False)

    for potential_TP_met in potential_TPs:
        for channel in channels:
            print('\n\n')
            print('### Mouse ', mouse, ' ###')
            print('### Channel ', channel, ' ###')
            ROI = crop_ROI(potential_TP_met, mouse, channel)
            if ROI is not None:
                filename_prefix = write_ROI_to_Nifti(ROI, potential_TP_met,
                                                     mouse, channel)
                write_ROI_to_PNGs(ROI, filename_prefix)
コード例 #9
0
def get_current_metastasis(candidate_ID):
    current_metastasis = dataconversions.filter_dicts(TP_candidates,
                                                      'global_id',
                                                      candidate_ID)[0]
    return current_metastasis
コード例 #10
0
d = datetime.datetime.today()
DATE_OF_TODAY = d.strftime('%d-%m-%Y')
print("Annotator:\t", NAME_OF_ANNOTATOR)
print("Today's date:\t", DATE_OF_TODAY)
print("Mouse:\t\t", mouse)
print()

#%%

main_fig = plt.figure(num=101)

prediction = filehandling.pload(DATAPATH + '/mice_metadata/' + mouse +
                                '/reviewed_prediction.pickledump')
metastases = prediction['metastases']
TP_candidates = dataconversions.filter_dicts(metastases,
                                             'evaluation-manually_confirmed',
                                             True)
number_of_candidates = len(TP_candidates)

candidate_IDs = []
for TP_candidate in TP_candidates:
    candidate_IDs.append(TP_candidate['global_id'])

all_candidate_IDs = copy.deepcopy(candidate_IDs)
print('All candidate IDs: ', all_candidate_IDs)

region = filehandling.pload(DATAPATH + '/mice_metadata/' + mouse +
                            '/region.pickledump')
whole_mouse_thumbnails = region['thumbnails']['MaxProjections_Z']

#%%
コード例 #11
0
#%% Step 2) For each metastasis, add all relevant meta information

for m, metastasis in enumerate(segmentation['metastases']): # double loop as this will be needed for upcoming computations
    print('Loop 1/2: Adding information for metastasis #' + str(metastasis['global_id']))
    # add global location information to metastasis
    segmentation['metastases'][m]['location'] = {}
    p_offset = np.asarray(region['patches'][metastasis['patch_id']]['offset'])
    segmentation['metastases'][m]['location']['offset'] = (p_offset + metastasis['offset']).tolist()
    segmentation['metastases'][m]['location']['center'] = (p_offset + metastasis['offset'] + metastasis['CoM']).tolist()
    
    # Add info from drug channel: are metastases significantly targeted?
    #  --> Yes, if mean(FG) significantly above 1.5*mean(BG)
    if(dataset == 'F15'):
        drugvol = filehandling.readNifti(pathDrug + 'patchvolume_' + str(metastasis['patch_id']) + '.nii')
        otherblobs = dataconversions.filter_dicts(segmentation['metastases'],'patch_id',metastasis['patch_id'])
        metastasis = p_leo.characterize_drugtargeting(metastasis,drugvol,min_padding=25,thr=1.5,otherblobs=otherblobs)

for m, metastasis in enumerate(segmentation['metastases']):
    print('Loop 2/2: Adding information for metastasis #' + str(metastasis['global_id']))
    
    # compute distance to nearest neighbor metastasis
    segmentation['metastases'][m]['location']['distNN'] = 99999
    segmentation['metastases'][m]['location']['distNNtargeted'] = 99999
    segmentation['metastases'][m]['location']['distNNuntargeted'] = 99999
    for neighbor in segmentation['metastases']:
        dist = blobanalysis.point_dist(metastasis['location']['center'],neighbor['location']['center'])
        if(metastasis['global_id'] is not neighbor['global_id']):
            segmentation['metastases'][m]['location']['distNN'] = np.min([segmentation['metastases'][m]['location']['distNN'],dist])
            if(dataset == 'F15'):
                if(neighbor['DrugCharacterization']['ttest_result']):