コード例 #1
0
ファイル: resources.py プロジェクト: natbusa/datafaucet
def assemble_metadata(md):
    keys = [
        'hash',
        'url',
        'service',
        'version',
        'format',

        'host'
    ]

    if md['service'] != 'file':
        keys.append('port')

    if md['service'] == 's3a' or md['format'] == 'jdbc':
        keys.extend([
            'user',
            'password'])

    if md['format'] == 'jdbc':
        keys.extend([
            'driver',
            'database',
            'schema',
            'table'])

    keys.append('options')
    return YamlDict(to_ordered_dict(md, keys))
コード例 #2
0
ファイル: metadata.py プロジェクト: SylarCS/datafaucet
    def load(self,
             profile_name='default',
             metadata_files=None,
             dotenv_path=None):
        """
        Load the profile, given a list of yml files and a .env filename
        profiles inherit from the defaul profile, a profile not found will contain the same elements as the default profile

        :param profile_name: the profile to load (default: 'default')
        :param metadata_files: a list of metadata files to read
        :param dotenv_path: the path of a dotenv file to read
        :return: the loaded metadata profile dict
        """

        # get metadata by scanning rootdir, if no list is provided
        if metadata_files is None:
            metadata_files = []

            # defaults metadata
            dir_path = os.path.dirname(os.path.realpath(__file__))
            metadata_files += abspath(['schemas/default.yml'], dir_path)

            # project metadata
            metadata_files += abspath(
                files.get_metadata_files(paths.rootdir()), paths.rootdir())

        # get dotenv_path by scanning rootdir, if no dotenv file is provided
        if dotenv_path is None:
            dotenv_path = abspath(files.get_dotenv_path(paths.rootdir()),
                                  paths.rootdir())

        # get env variables from .env file
        if dotenv_path and os.path.isfile(dotenv_path):
            load_dotenv(dotenv_path)

        profiles = self.read(metadata_files)

        # empty profile if profile not found
        if profile_name not in self._info['profiles']:
            self.raiseException(f'Profile "{profile_name}" not found.')

        # read metadata, get the profile, if not found get an empty profile
        profiles = self.inherit(profiles)
        metadata = profiles[profile_name]

        # render any jinja templates in the profile
        md = self.render(metadata)

        # validate
        self.validate(md)

        # format
        md = self.formatted(md)

        self._profile = YamlDict(md)
        self._info['active'] = profile_name
コード例 #3
0
    def get_environment(self):
        vars = [
            'SPARK_HOME',
            'HADOOP_HOME',
            'JAVA_HOME',
            'PYSPARK_PYTHON',
            'PYSPARK_DRIVER_PYTHON',
            'PYTHONPATH',
            'PYSPARK_SUBMIT_ARGS',
            'SPARK_DIST_CLASSPATH',
        ]

        return YamlDict({v: os.environ.get(v) for v in vars})
コード例 #4
0
ファイル: engine.py プロジェクト: natbusa/datafaucet
    def start_session(self, conf):
        try:
            # init the spark session
            session = pyspark.sql.SparkSession.builder.config(
                conf=conf).getOrCreate()

            # store the spark session
            self.session = session

            # fix SQLContext for back compatibility
            initialize_spark_sql_context(session, session.sparkContext)

            # pyspark set log level method
            # (this will not suppress WARN before starting the context)
            session.sparkContext.setLogLevel("ERROR")

            # bootstrap datafaucet.zip in the cluster
            if not self.is_spark_local():
                dir_path = os.path.dirname(os.path.realpath(__file__))
                filename = os.path.abspath(
                    os.path.join(dir_path, 'dist/datafaucet.zip'))
                session.sparkContext.addPyFile(filename)

            # collect configuration
            self.conf = dict(dict(session.sparkContext.getConf().getAll()))

            # set the engine version
            self.version = session.version

            # set environment
            self.env = self.get_environment()

            # set info
            self.info['spark_classpath'] = self.info['spark_classpath'][
                0].split(' ')
            self.info = YamlDict(self.info)

            # set version if spark is loaded
            logging.notice(
                f'Engine context {self.engine_type}:{self.version} successfully started'
            )

            # session is running
            self.stopped = False

        except Exception as e:
            print(e)
            logging.error('Could not start the engine context')
            return None
コード例 #5
0
ファイル: project.py プロジェクト: SylarCS/datafaucet
    def info(self):
        if not self.loaded:
            logging.error("No project profile loaded. " +
                          "Execute datafaucet.project.load(...) first.")
            return None

        return YamlDict({
            'version': __version__,
            'username': self._username,
            'session_name': self._session_name,
            'session_id': self._session_id,
            'profile': self._profile,
            'rootdir': paths.rootdir(),
            'script_path': self._script_path,
            'dotenv_path': self._dotenv_path,
            'notebooks_files': self._notebook_files,
            'python_files': self._python_files,
            'metadata_files': self._metadata_files,
            'repository': self._repo
        })
コード例 #6
0
ファイル: engine.py プロジェクト: SylarCS/datafaucet-1
    def __init__(self,
                 session_name=None,
                 session_id=0,
                 master=None,
                 timezone=None,
                 jars=None,
                 packages=None,
                 pyfiles=None,
                 files=None,
                 repositories=None,
                 services=None,
                 conf=None):

        #call base class
        # stop the previous instance,
        # register self a the new instance
        super().__init__('dask', session_name, session_id)

        # bundle all submit in a dictionary
        self.submit = {
            'jars': [jars] if isinstance(jars, str) else jars or [],
            'packages':
            [packages] if isinstance(packages, str) else packages or [],
            'py-files':
            [pyfiles] if isinstance(pyfiles, str) else pyfiles or [],
            'files': [files] if isinstance(files, str) else files or [],
            'repositories': [repositories]
            if isinstance(repositories, str) else repositories or [],
            'conf': [conf] if isinstance(conf, tuple) else conf or [],
        }

        # collect info
        self.set_info()

        # detect packages and configuration from services
        detected = self.detect_submit_params(services)

        # merge up with those passed with the init
        for k in self.submit.keys():
            self.submit[k] = list(sorted(set(self.submit[k] + detected[k])))

        #set submit args via env variable
        self.set_submit_args()

        # set other environment variables
        self.set_env_variables()

        # set spark conf object
        print(f"Setting context to dask.")

        # config passed through the api call go via the config
        for c in self.submit['conf']:
            k, v, *_ = list(c) + ['']
            if isinstance(v, (bool, int, float, str)):
                #todo:
                #conf.set(k, v)
                pass

        # stop the current session if running
        self._stop()

        # start spark
        session = self.start_context(conf)

        # record the data in the engine object for debug and future references
        self.conf = YamlDict(nested_to_record(get_options(pd)))

        if session:
            # set the engine version
            self.version = dask.__version__

            # set environment
            self.env = self.get_environment()

            # record the data in the engine object for debug and future references
            self.conf = YamlDict(nested_to_record(get_options(pd)))

            # set version if spark is loaded
            print(
                f'Engine context {self.engine_type}:{self.version} successfully started'
            )

            # store the spark session
            self.context = session

            # session is running
            self.stopped = False
コード例 #7
0
ファイル: engine.py プロジェクト: SylarCS/datafaucet-1
class DaskEngine(EngineBase, metaclass=EngineSingleton):
    def set_info(self):

        self.info['python_version'] = python_version()
        self.info['dask_version'] = dask.__version__

        return

    def detect_submit_params(self, services=None):
        assert (isinstance(services, (type(None), str, list, set)))
        services = [services] if isinstance(services, str) else services
        services = services or []

        # if service is a string, make a resource out of it

        resources = [
            s if isinstance(s, dict) else Resource(service=s) for s in services
        ]

        # create a dictionary of services and versions,
        services = {}
        for r in resources:
            services[r['service']] = r['version']

        submit_types = [
            'jars', 'packages', 'repositories', 'py-files', 'files', 'conf'
        ]

        submit_objs = dict()
        for submit_type in submit_types:
            submit_objs[submit_type] = []

        if not services:
            return submit_objs

        services = dict(sorted(services.items()))

        #### submit: repositories
        repositories = submit_objs['repositories']

        #### submit: jars
        jars = submit_objs['jars']

        #### submit: packages
        packages = submit_objs['packages']

        #### submit: packages
        conf = submit_objs['conf']

        return submit_objs

    def set_submit_args(self):
        pass

    def set_env_variables(self):
        pass

    def __init__(self,
                 session_name=None,
                 session_id=0,
                 master=None,
                 timezone=None,
                 jars=None,
                 packages=None,
                 pyfiles=None,
                 files=None,
                 repositories=None,
                 services=None,
                 conf=None):

        #call base class
        # stop the previous instance,
        # register self a the new instance
        super().__init__('dask', session_name, session_id)

        # bundle all submit in a dictionary
        self.submit = {
            'jars': [jars] if isinstance(jars, str) else jars or [],
            'packages':
            [packages] if isinstance(packages, str) else packages or [],
            'py-files':
            [pyfiles] if isinstance(pyfiles, str) else pyfiles or [],
            'files': [files] if isinstance(files, str) else files or [],
            'repositories': [repositories]
            if isinstance(repositories, str) else repositories or [],
            'conf': [conf] if isinstance(conf, tuple) else conf or [],
        }

        # collect info
        self.set_info()

        # detect packages and configuration from services
        detected = self.detect_submit_params(services)

        # merge up with those passed with the init
        for k in self.submit.keys():
            self.submit[k] = list(sorted(set(self.submit[k] + detected[k])))

        #set submit args via env variable
        self.set_submit_args()

        # set other environment variables
        self.set_env_variables()

        # set spark conf object
        print(f"Setting context to dask.")

        # config passed through the api call go via the config
        for c in self.submit['conf']:
            k, v, *_ = list(c) + ['']
            if isinstance(v, (bool, int, float, str)):
                #todo:
                #conf.set(k, v)
                pass

        # stop the current session if running
        self._stop()

        # start spark
        session = self.start_context(conf)

        # record the data in the engine object for debug and future references
        self.conf = YamlDict(nested_to_record(get_options(pd)))

        if session:
            # set the engine version
            self.version = dask.__version__

            # set environment
            self.env = self.get_environment()

            # record the data in the engine object for debug and future references
            self.conf = YamlDict(nested_to_record(get_options(pd)))

            # set version if spark is loaded
            print(
                f'Engine context {self.engine_type}:{self.version} successfully started'
            )

            # store the spark session
            self.context = session

            # session is running
            self.stopped = False

    def start_context(self, conf):
        try:
            return dask.dataframe
        except Exception as e:
            print(e)
            logging.error('Could not start the engine context')
            return None

    def get_environment(self):
        vars = ['SPARK_HOME', 'JAVA_HOME', 'PYTHONPATH']

        return YamlDict({v: os.environ.get(v) for v in vars})

    def _stop(self, spark_session=None):
        pass

    def range(self, *args):
        return dd.from_pandas(pd.DataFrame(range(*args), columns=['id']),
                              npartitions=dask.system.cpu_count())

    def load_log(self, md, options, ts_start):
        ts_end = timer()

        log_data = {'md': md, 'options': options, 'time': ts_end - ts_start}
        logging.info('load', extra=log_data)

    def load_with_pandas(self, kwargs):
        logging.warning("Fallback dataframe reader")

        # conversion of *some* pyspark arguments to pandas
        kwargs.pop('inferSchema', None)

        kwargs['header'] = 'infer' if kwargs.get('header') else None
        kwargs['prefix'] = '_c'

        return kwargs

    def load_csv(self,
                 path=None,
                 provider=None,
                 *args,
                 sep=None,
                 header=None,
                 **kwargs):

        #return None
        obj = None

        md = Resource(path, provider, sep=sep, header=header, **kwargs)

        # download if necessary
        md = get_local(md)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['header'] = options.get('header') or True
        options['inferSchema'] = options.get('inferSchema') or True
        options['sep'] = options.get('sep') or ','

        local = self.is_spark_local()

        # start the timer for logging
        ts_start = timer()
        try:
            #three approaches: local, cluster, and service
            if md['service'] == 'file' and local:
                obj = self.context.read.options(**options).csv(md['url'])
            elif md['service'] == 'file':
                logging.warning(
                    f'local file + spark cluster: loading using pandas reader',
                    extra={'md': to_dict(md)})

                df = pd.read_csv(md['url'],
                                 sep=options['sep'],
                                 header=options['header'])
                obj = self.context.createDataFrame(df)
            elif md['service'] in ['hdfs', 's3a']:
                obj = self.context.read.options(**options).csv(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(e, extra={'md': md})

        self.load_log(md, options, ts_start)
        return obj

    def load_parquet(self,
                     path=None,
                     provider=None,
                     *args,
                     mergeSchema=None,
                     **kwargs):

        #return None
        obj = None

        md = Resource(path,
                      provider,
                      format='parquet',
                      mergeSchema=mergeSchema,
                      **kwargs)

        # download if necessary
        md = get_local(md)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['mergeSchema'] = options.get('mergeSchema') or True

        local = self.is_spark_local()

        # start the timer for logging
        ts_start = timer()
        try:
            #three approaches: local, cluster, and service
            if md['service'] == 'file' and local:
                obj = self.context.read.options(**options).parquet(md['url'])
            elif md['service'] == 'file':
                logging.warning(
                    f'local file + spark cluster: loading using pandas reader',
                    extra={'md': to_dict(md)})
                #fallback to the pandas reader, then convert to spark
                df = pd.read_parquet(md['url'])
                obj = self.context.createDataFrame(df)
            elif md['service'] in ['hdfs', 's3a']:
                obj = self.context.read.options(**options).parquet(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(e, extra={'md': md})

        self.load_log(md, options, ts_start)
        return obj

    def load_json(self, path=None, provider=None, *args, lines=True, **kwargs):

        #return None
        obj = None

        md = Resource(path, provider, format='json', lines=lines, **kwargs)

        # download if necessary
        md = get_local(md)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['lines'] = options.get('lines') or True
        options['inferSchema'] = options.get('inferSchema') or True

        local = self.is_spark_local()

        # start the timer for logging
        ts_start = timer()
        try:
            #three approaches: local, cluster, and service
            if md['service'] == 'file' and options['lines']:
                obj = self.context.read.options(**options).json(md['url'])
            elif md['service'] == 'file':
                # fallback to the pandas reader,
                # then convert to spark
                logging.warning(
                    f'local file + spark cluster: loading using pandas reader',
                    extra={'md': to_dict(md)})
                df = pd.read_json(md['url'], lines=options['lines'])
                obj = self.context.createDataFrame(df)
            elif md['service'] in ['hdfs', 's3a']:
                obj = self.context.read.options(**options).json(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(e, extra={'md': md})

        self.load_log(md, options, ts_start)
        return obj

    def load_jdbc(self, path=None, provider=None, *args, **kwargs):
        #return None
        obj = None

        md = Resource(path, provider, format='jdbc', **kwargs)

        options = md['options']

        # start the timer for logging
        ts_start = timer()
        try:
            if md['service'] in [
                    'sqlite', 'mysql', 'postgres', 'mssql', 'clickhouse',
                    'oracle'
            ]:
                obj = self.context.read \
                    .format('jdbc') \
                    .option('url', md['url']) \
                    .option("dbtable", md['table']) \
                    .option("driver", md['driver']) \
                    .option("user", md['user']) \
                    .option('password', md['password']) \
                    .options(**options)
                # load the data from jdbc
                obj = obj.load(**kwargs)
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return obj

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(e, extra={'md': md})

        self.load_log(md, options, ts_start)
        return obj

    def load(self, path=None, provider=None, *args, format=None, **kwargs):

        md = Resource(path, provider, format=format, **kwargs)

        if md['format'] == 'csv':
            return self.load_csv(path, provider, **kwargs)
        elif md['format'] == 'json':
            return self.load_json(path, provider, **kwargs)
        elif md['format'] == 'parquet':
            return self.load_parquet(path, provider, **kwargs)
        elif md['format'] == 'jdbc':
            return self.load_jdbc(path, provider, **kwargs)
        else:
            logging.error(f'Unknown resource format "{md["format"]}"',
                          extra={'md': to_dict(md)})
        return None

    def save_log(self, md, options, ts_start):
        ts_end = timer()

        log_data = {'md': md, 'options': options, 'time': ts_end - ts_start}
        logging.info('save', extra=log_data)

    def is_spark_local(self):
        return self.conf.get('spark.master').startswith('local[')

    def directory_to_file(self, path):
        if os.path.exists(path) and os.path.isfile(path):
            return

        dirname = os.path.dirname(path)
        basename = os.path.basename(path)

        filename = list(
            filter(lambda x: x.startswith('part-'), os.listdir(path)))
        if len(filename) != 1:
            if len(filename) > 1:
                logging.warning(
                    'cannot convert if more than a partition present')
            return
        else:
            filename = filename[0]

        shutil.move(os.path.join(path, filename), dirname)
        if os.path.exists(path) and os.path.isdir(path):
            shutil.rmtree(path)

        shutil.move(os.path.join(dirname, filename),
                    os.path.join(dirname, basename))
        return

    def save_parquet(self,
                     obj,
                     path=None,
                     provider=None,
                     *args,
                     mode=None,
                     **kwargs):

        result = True
        md = Resource(path, provider, format='parquet', mode=mode, **kwargs)
        options = md['options']

        # after collecting from metadata, or method call, define defaults
        options['mode'] = options['mode'] or 'overwrite'

        local = self.is_spark_local()

        ts_start = timer()
        try:
            #three approaches: file-local, local+cluster, and service
            if md['service'] == 'file' and local:
                obj.coalesce(1).write\
                    .format('parquet')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .parquet(md['url'])

            elif md['service'] == 'file':
                if os.path.exists(md['url']) and os.path.isdir(md['url']):
                    shutil.rmtree(md['url'])

                # save with pandas
                obj.toPandas().to_parquet(md['url'], mode=options['mode'])

            elif md['service'] in ['hdfs', 's3a']:
                obj.write\
                     .format('parquet')\
                     .mode(options['mode'])\
                     .options(**options)\
                     .parquet(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                result = False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
            result = False

        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        self.save_log(md, options, ts_start)
        return result

    def save_csv(self,
                 obj,
                 path=None,
                 provider=None,
                 *args,
                 mode=None,
                 sep=None,
                 header=None,
                 **kwargs):

        result = True

        md = Resource(path,
                      provider,
                      format='csv',
                      mode=mode,
                      sep=sep,
                      header=header,
                      **kwargs)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['header'] = options['header'] or 'true'
        options['sep'] = options['sep'] or ','
        options['mode'] = options['mode'] or 'overwrite'

        local = self.is_spark_local()

        ts_start = timer()
        try:
            #three approaches: file+local, file+cluster, and service
            if md['service'] == 'file' and local:
                obj.coalesce(1).write\
                    .format('csv')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .csv(md['url'])
                self.directory_to_file(md['url'])

            elif md['service'] == 'file':
                if os.path.exists(md['url']) and os.path.isdir(md['url']):
                    shutil.rmtree(md['url'])

                # save with pandas
                obj.toPandas().to_csv(md['url'],
                                      mode=options['mode'],
                                      header=options['header'],
                                      sep=options['sep'])

            elif md['service'] in ['hdfs', 's3a']:
                obj.write\
                    .format('csv')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .csv(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                result = False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
            result = False

        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        self.save_log(md, options, ts_start)
        return result

    def save_json(self,
                  obj,
                  path=None,
                  provider=None,
                  *args,
                  mode=None,
                  lines=None,
                  **kwargs):

        result = True

        md = Resource(path,
                      provider,
                      format='csv',
                      mode=mode,
                      lines=lines,
                      **kwargs)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['mode'] = options['mode'] or 'overwrite'
        options['lines'] = options['lines'] or True

        local = self.is_spark_local()

        ts_start = timer()
        try:
            #three approaches: local, cluster, and service
            if local and md['service'] == 'file' and options['lines']:
                obj.coalesce(1).write\
                    .format('json')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .json(md['url'])
                self.directory_to_file(md['url'])

            elif md['service'] == 'file':
                # fallback, use pandas
                # save single files, not directories
                if os.path.exists(md['url']) and os.path.isdir(md['url']):
                    shutil.rmtree(md['url'])

                # save with pandas
                obj.toPandas().to_json(md['url'],
                                       mode=options['mode'],
                                       lines=options['lines'])

            elif md['service'] in ['hdfs', 's3a']:
                obj.write\
                    .format('json')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .json(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                result = False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
            result = False

        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        self.save_log(md, options, ts_start)
        return result

    def save_jdbc(self,
                  obj,
                  path=None,
                  provider=None,
                  *args,
                  mode=None,
                  **kwargs):

        result = True
        md = Resource(path, provider, format='jdbc', mode=mode, **kwargs)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['mode'] = options['mode'] or 'overwrite'

        ts_start = timer()
        try:
            #three approaches: local, cluster, and service
            if md['service'] in [
                    'sqlite', 'mysql', 'postgres', 'mssql', 'clickhouse',
                    'oracle'
            ]:
                obj.write \
                    .format('jdbc') \
                    .option('url', md['url']) \
                    .option("dbtable", md['table']) \
                    .option("driver", md['driver']) \
                    .option("user", md['user']) \
                    .option('password', md['password']) \
                    .options(**options) \
                    .mode(options['mode'])\
                    .save()
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                result = False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
            result = False

        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        self.save_log(md, options, ts_start)
        return result

    def save(self,
             obj,
             path=None,
             provider=None,
             *args,
             format=None,
             mode=None,
             **kwargs):

        md = Resource(path, provider, format=format, mode=mode, **kwargs)

        if md['format'] == 'csv':
            return self.save_csv(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'tsv':
            kwargs['sep'] = '\t'
            return self.save_csv(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'json':
            return self.save_json(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'jsonl':
            return self.save_json(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'parquet':
            return self.save_parquet(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'jdbc':
            return self.save_jdbc(obj, path, provider, mode=mode, **kwargs)
        else:
            logging.error(f'Unknown format "{md["service"]}"',
                          extra={'md': md})
            return False

    def copy(self, md_src, md_trg, mode='append'):
        # timer
        timer_start = timer()

        # src dataframe
        df_src = self.load(md_src)

        # if not path on target, get it from src
        if not md_trg['resource_path']:
            md_trg = resource.metadata(self._rootdir, self._metadata,
                                       md_src['resource_path'],
                                       md_trg['provider_alias'])

        # logging
        log_data = {
            'src_hash': md_src['hash'],
            'src_path': md_src['resource_path'],
            'trg_hash': md_trg['hash'],
            'trg_path': md_trg['resource_path'],
            'mode': mode,
            'updated': False,
            'records_read': 0,
            'records_add': 0,
            'records_del': 0,
            'columns': 0,
            'time': timer() - timer_start
        }

        # could not read source, log error and return
        if df_src is None:
            logging.error(log_data)
            return

        num_rows = df_src.count()
        num_cols = len(df_src.columns)

        # empty source, log notice and return
        if num_rows == 0 and mode == 'append':
            log_data['time'] = timer() - timer_start
            logging.notice(log_data)
            return

        # overwrite target, save, log notice/error and return
        if mode == 'overwrite':
            if md_trg['state_column']:
                df_src = df_src.withColumn('_state', F.lit(0))

            result = self.save(df_src, md_trg, mode=mode)

            log_data['time'] = timer() - timer_start
            log_data['records_read'] = num_rows
            log_data['records_add'] = num_rows
            log_data['columns'] = num_cols

            logging.notice(log_data) if result else logging.error(log_data)
            return

        # trg dataframe (if exists)
        try:
            df_trg = self.load(md_trg, catch_exception=False)
        except:
            df_trg = dataframe.empty(df_src)

        # de-dup (exclude the _updated column)

        # create a view from the extracted log
        df_trg = dataframe.view(df_trg)

        # capture added records
        df_add = dataframe.diff(
            df_src, df_trg,
            ['_date', '_datetime', '_updated', '_hash', '_state'])
        rows_add = df_add.count()

        # capture deleted records
        rows_del = 0
        if md_trg['state_column']:
            df_del = dataframe.diff(
                df_trg, df_src,
                ['_date', '_datetime', '_updated', '_hash', '_state'])
            rows_del = df_del.count()

        updated = (rows_add + rows_del) > 0

        num_cols = len(df_add.columns)
        num_rows = max(df_src.count(), df_trg.count())

        # save diff
        if updated:
            if md_trg['state_column']:
                df_add = df_add.withColumn('_state', F.lit(0))
                df_del = df_del.withColumn('_state', F.lit(1))

                df = df_add.union(df_del)
            else:
                df = df_add

            result = self.save(df, md_trg, mode=mode)
        else:
            result = True

        log_data.update({
            'updated': updated,
            'records_read': num_rows,
            'records_add': rows_add,
            'records_del': rows_del,
            'columns': num_cols,
            'time': timer() - timer_start
        })

        logging.notice(log_data) if result else logging.error(log_data)

    def list(self, provider, path=None, **kwargs):
        df_schema = T.StructType([
            T.StructField('name', T.StringType(), True),
            T.StructField('type', T.StringType(), True)
        ])

        df_empty = self.context.createDataFrame(data=(), schema=df_schema)

        md = Resource(path, provider, **kwargs)

        try:
            if md['service'] in ['local', 'file']:
                lst = []
                rootpath = md['url']
                for f in os.listdir(rootpath):
                    fullpath = os.path.join(rootpath, f)
                    if os.path.isfile(fullpath):
                        obj_type = 'FILE'
                    elif os.path.isdir(fullpath):
                        obj_type = 'DIRECTORY'
                    elif os.path.islink(fullpath):
                        obj_type = 'LINK'
                    elif os.path.ismount(fullpath):
                        obj_type = 'MOUNT'
                    else:
                        obj_type = 'UNDEFINED'

                    obj_name = f
                    lst += [(obj_name, obj_type)]

                if lst:
                    df = self.context.createDataFrame(lst, ['name', 'type'])
                else:
                    df = df_empty

                return df

            elif md['service'] in ['hdfs', 's3a']:
                sc = self.context._sc
                URI = sc._gateway.jvm.java.net.URI
                Path = sc._gateway.jvm.org.apache.hadoop.fs.Path
                FileSystem = sc._gateway.jvm.org.apache.hadoop.fs.FileSystem

                parsed = urnparse(md['url'])
                if md['service'] == 's3a':
                    path = parsed.path.split('/')
                    url = 's3a://' + path[0]
                    path = '/' + '/'.join(path[1:]) if len(path) > 1 else '/'

                if md['service'] == 'hdfs':
                    host_port = f"{parsed.host}:{parsed.port}" if parsed.port else parsed.hosts
                    url = f'hdfs://{host_port}'
                    path = '/' + parsed.path

                try:
                    fs = FileSystem.get(URI(url),
                                        sc._jsc.hadoopConfiguration())
                    obj = fs.listStatus(Path(path))
                except:
                    logging.error(f'An error occurred accessing {url}{path}')
                    obj = []

                lst = []
                for i in range(len(obj)):
                    if obj[i].isFile():
                        obj_type = 'FILE'
                    elif obj[i].isDirectory():
                        obj_type = 'DIRECTORY'
                    else:
                        obj_type = 'UNDEFINED'

                    obj_name = obj[i].getPath().getName()
                    lst += [(obj_name, obj_type)]

                if lst:
                    df = self.context.createDataFrame(lst, ['name', 'type'])
                else:
                    df = df_empty

                return df

            elif md['format'] == 'jdbc':
                # remove options from database, if any

                database = md["database"].split('?')[0]
                schema = md['schema']
                table = md['table']

                if database and table:
                    try:
                        obj = self.context.read \
                        .format('jdbc') \
                        .option('url', md['url']) \
                        .option("dbtable", table) \
                        .option("driver", md['driver']) \
                        .option("user", md['user']) \
                        .option('password', md['password']) \
                        .load()
                        info = [(i.name, i.dataType.simpleString())
                                for i in obj.schema]
                    except:
                        info = []

                    if info:
                        return self.context.createDataFrame(
                            info, ['name', 'type'])

                if md['service'] == 'mssql':
                    query = f"""
                            ( SELECT table_name, table_type
                              FROM INFORMATION_SCHEMA.TABLES
                              WHERE table_schema='{schema}'
                            ) as query
                            """
                elif md['service'] == 'oracle':
                    query = f"""
                            ( SELECT table_name, table_type
                             FROM all_tables
                             WHERE table_schema='{schema}'
                            ) as query
                            """
                elif md['service'] == 'mysql':
                    query = f"""
                            ( SELECT table_name, table_type
                              FROM information_schema.tables
                              WHERE table_schema='{schema}'
                            ) as query
                            """
                elif md['service'] == 'postgres':
                    query = f"""
                            ( SELECT table_name, table_type
                              FROM information_schema.tables
                              WHERE table_schema = '{schema}'
                            ) as query
                            """
                else:
                    # vanilla query ... for other databases
                    query = f"""
                                ( SELECT table_name, table_type
                                  FROM information_schema.tables'
                                ) as query
                                """

                obj = self.context.read \
                    .format('jdbc') \
                    .option('url', md['url']) \
                    .option("dbtable", query) \
                    .option("driver", md['driver']) \
                    .option("user", md['user']) \
                    .option('password', md['password']) \
                    .load()

                # load the data from jdbc
                lst = []
                for x in obj.select('TABLE_NAME', 'TABLE_TYPE').collect():
                    lst.append((x.TABLE_NAME, x.TABLE_TYPE))

                if lst:
                    df = self.context.createDataFrame(lst, ['name', 'type'])
                else:
                    df = df_empty

                return df

            else:
                logging.error({
                    'md':
                    md,
                    'error_msg':
                    f'List resource on service "{md["service"]}" not implemented'
                })
                return df_empty
        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        return df_empty
コード例 #8
0
ファイル: engine.py プロジェクト: SylarCS/datafaucet-1
    def get_environment(self):
        vars = ['SPARK_HOME', 'JAVA_HOME', 'PYTHONPATH']

        return YamlDict({v: os.environ.get(v) for v in vars})
コード例 #9
0
class SparkEngine(EngineBase, metaclass=EngineSingleton):
    @staticmethod
    def set_conf_timezone(conf, timezone=None):
        assert (type(conf) == pyspark.conf.SparkConf)

        # if timezone set to 'naive',
        # force UTC to override local system and spark defaults
        # This will effectively avoid any conversion of datetime object to/from spark

        if timezone == 'naive':
            timezone = 'UTC'

        if timezone:
            os.environ['TZ'] = timezone
            time.tzset()
            conf.set('spark.sql.session.timeZone', timezone)
            conf.set('spark.driver.extraJavaOptions',
                     f'-Duser.timezone={timezone}')
            conf.set('spark.executor.extraJavaOptions',
                     f'-Duser.timezone={timezone}')
        else:
            # use spark and system defaults
            pass

    def set_info(self):
        hadoop_version = None
        hadoop_detect_from = None
        try:
            spark_session = pyspark.sql.SparkSession.builder.getOrCreate()
            hadoop_version = spark_session.sparkContext._gateway.jvm.org.apache.hadoop.util.VersionInfo.getVersion(
            )
            hadoop_detect_from = 'spark'
        except Exception as e:
            pass

        self._stop(spark_session)

        if hadoop_version is None:
            hadoop_version = get_hadoop_version_from_system()
            hadoop_detect_from = 'system'

        if hadoop_version is None:
            logging.warning('Could not find a valid hadoop install.')

        hadoop_home = get_tool_home('hadoop', 'HADOOP_HOME', 'bin')[0]
        spark_home = get_tool_home('spark-submit', 'SPARK_HOME', 'bin')[0]

        spark_dist_classpath = os.environ.get('SPARK_DIST_CLASSPATH')
        spark_dist_classpath_source = 'env'

        if not spark_dist_classpath:
            spark_dist_classpath_source = os.path.join(spark_home,
                                                       'conf/spark-env.sh')
            if os.path.isfile(spark_dist_classpath_source):
                with open(spark_dist_classpath_source) as s:
                    for line in s:
                        pattern = 'SPARK_DIST_CLASSPATH='
                        pos = line.find(pattern)
                        if pos >= 0:
                            spark_dist_classpath = line[pos +
                                                        len(pattern):].strip()
                            spark_dist_classpath = run_command(
                                f'echo {spark_dist_classpath}')[0]

        if hadoop_detect_from == 'system' and (not spark_dist_classpath):
            logging.warning(
                textwrap.dedent("""
                        SPARK_DIST_CLASSPATH not defined and spark installed without hadoop
                        define SPARK_DIST_CLASSPATH in $SPARK_HOME/conf/spark-env.sh as follows:

                           export SPARK_DIST_CLASSPATH=$(hadoop classpath)

                        for more info refer to:
                        https://spark.apache.org/docs/latest/hadoop-provided.html
                    """))

        self.info['python_version'] = python_version()
        self.info['hadoop_version'] = hadoop_version
        self.info['hadoop_detect'] = hadoop_detect_from
        self.info['hadoop_home'] = hadoop_home
        self.info['spark_home'] = spark_home
        self.info['spark_classpath'] = spark_dist_classpath.split(
            ':') if spark_dist_classpath else None
        self.info['spark_classpath_source'] = spark_dist_classpath_source

        return

    def detect_submit_params(self, services=None):
        assert (isinstance(services, (type(None), str, list, set)))
        services = [services] if isinstance(services, str) else services
        services = services or []

        # if service is a string, make a resource out of it

        resources = [
            s if isinstance(s, dict) else Resource(service=s) for s in services
        ]

        # create a dictionary of services and versions,
        services = {}
        for r in resources:
            services[r['service']] = r['version']

        submit_types = [
            'jars', 'packages', 'repositories', 'py-files', 'files', 'conf'
        ]

        submit_objs = dict()
        for submit_type in submit_types:
            submit_objs[submit_type] = {} if submit_type == 'conf' else []

        if not services:
            return submit_objs

        services = dict(sorted(services.items()))

        # get hadoop, and configured metadata services
        hadoop_version = self.info['hadoop_version']

        #### submit: repositories
        repositories = submit_objs['repositories']

        #### submit: jars
        jars = submit_objs['jars']

        #### submit: packages
        packages = submit_objs['packages']

        for s, v in services.items():
            if s == 'mysql':
                packages.append(f'mysql:mysql-connector-java:{v}')
            elif s == 'sqlite':
                packages.append(f'org.xerial:sqlite-jdbc:{v}')
            elif s == 'postgres':
                packages.append(f'org.postgresql:postgresql:{v}')
            elif s == 'oracle':
                vv = v.split('.') if v else [0, 0, 0, 0]
                repositories.append(
                    'http://maven.icm.edu.pl/artifactory/repo/')
                repositories.append('https://maven.xwiki.org/externals')
                if vv[0] == '12' and vv[1] == '2':
                    packages.append(f'com.oracle.jdbc:ojdbc8:{v}')
                elif vv[0] == '12' and vv[1] == '1':
                    packages.append(f'com.oracle.jdbc:ojdbc7:{v}')
                elif vv[0] == '11':
                    packages.append(f'com.oracle.jdbc:ojdbc6:{v}')
                else:
                    logging.warning(
                        f'could not autodetect the oracle '
                        'ojdbc driver to install for {s}, version {v}')
            elif s == 'mssql':
                packages.append(f'com.microsoft.sqlserver:mssql-jdbc:{v}')
            elif s == 'mongodb':
                packages.append(
                    f'org.mongodb.spark:mongo-spark-connector_2.11:{v}')
            elif s == 'clickhouse':
                packages.append(f'ru.yandex.clickhouse:clickhouse-jdbc:{v}')
            elif s == 's3a':
                if hadoop_version:
                    packages.append(
                        f"org.apache.hadoop:hadoop-aws:{hadoop_version}")
                else:
                    logging.warning('The Hadoop installation is not detected. '
                                    'Could not load hadoop-aws (s3a) package ')

        #### submit: packages
        conf = submit_objs['conf']

        for v in resources:
            if v['service'] == 's3a':
                service_url = 'http://{}:{}'.format(v['host'], v['port'])
                s3a = "org.apache.hadoop.fs.s3a.S3AFileSystem"

                conf["spark.hadoop.fs.s3a.endpoint"] = service_url
                conf["spark.hadoop.fs.s3a.access.key"] = v['user']
                conf["spark.hadoop.fs.s3a.secret.key"] = v['password']
                conf["spark.hadoop.fs.s3a.impl"] = s3a
                conf["spark.hadoop.fs.s3a.path.style.access"] = "true"
                break

        return submit_objs

    def set_submit_args(self):
        submit_args = ''

        for k in self.submit.keys() - {'conf'}:
            s = ",".join(self.submit[k])
            submit_args += f' --{k} {s}' if s else ''

        # submit config options one by one
        for k, v in self.submit['conf'].items():
            submit_args += f' --conf {k}={v}'

        #### print debug
        for k in self.submit.keys():
            if self.submit[k]:
                print(f'Configuring {k}:')
                for e in self.submit[k]:
                    v = e
                    if isinstance(e, tuple):
                        if len(e) > 1 and str(e[0]).endswith('.key'):
                            e = (e[0], '****** (redacted)')
                        v = ' : '.join(list([str(x) for x in e]))
                    print(f'  -  {v}')

        # set PYSPARK_SUBMIT_ARGS env variable
        submit_args = '{} pyspark-shell'.format(submit_args)
        os.environ['PYSPARK_SUBMIT_ARGS'] = submit_args

    def set_env_variables(self):
        for e in ['PYSPARK_PYTHON', 'PYSPARK_DRIVER_PYTHON']:
            if sys.executable and not os.environ.get(e):
                os.environ[e] = sys.executable

    def __init__(self,
                 session_name=None,
                 session_id=0,
                 master='local[*]',
                 timezone=None,
                 jars=None,
                 packages=None,
                 pyfiles=None,
                 files=None,
                 repositories=None,
                 services=None,
                 conf=None):

        #call base class
        # stop the previous instance,
        # register self a the new instance
        super().__init__('spark', session_name, session_id)

        # bundle all submit in a dictionary
        self.submit = {
            'jars': [jars] if isinstance(jars, str) else jars or [],
            'packages':
            [packages] if isinstance(packages, str) else packages or [],
            'py-files':
            [pyfiles] if isinstance(pyfiles, str) else pyfiles or [],
            'files': [files] if isinstance(files, str) else files or [],
            'repositories': [repositories]
            if isinstance(repositories, str) else repositories or [],
            'conf':
            conf or {}
        }

        # suppress INFO logging for java_gateway
        python_logging.getLogger('py4j.java_gateway').setLevel(
            python_logging.ERROR)

        # collect info
        self.set_info()

        # detect packages and configuration from services
        detected = self.detect_submit_params(services)

        # merge up with those passed with the init
        for k in self.submit.keys() - {'conf'}:
            self.submit[k] = list(sorted(set(self.submit[k] + detected[k])))
        self.submit['conf'] = merge(detected['conf'], self.submit['conf'])

        #set submit args via env variable
        self.set_submit_args()

        # set other spark-related environment variables
        self.set_env_variables()

        # set spark conf object
        print(f"Connecting to spark master: {master}")

        conf = pyspark.SparkConf()
        self.set_conf_timezone(conf, timezone)

        # set session name
        conf.setAppName(session_name)

        # set master
        conf.setMaster(master)

        # config passed through the api call go via the config
        for c in self.submit['conf']:
            k, v, *_ = list(c) + ['']
            if isinstance(v, (bool, int, float, str)):
                conf.set(k, v)

        # stop the current session if running
        self._stop()

        # start spark
        spark_session = self.start_context(conf)

        # record the data in the engine object for debug and future references
        self.conf = YamlDict(dict(conf.getAll()))

        if spark_session:
            self.conf = dict(
                dict(spark_session.sparkContext.getConf().getAll()))

            # set version if spark is loaded
            self._version = spark_session.version
            print(
                f'Engine context {self.engine_type}:{self.version} successfully started'
            )

            # store the spark session
            self.context = spark_session

            # session is running
            self.stopped = False

    def initialize_spark_sql_context(self, spark_session, spark_context):
        try:
            del pyspark.sql.SQLContext._instantiatedContext
        except:
            pass

        if spark_context is None:
            spark_context = spark_session.sparkContext

        pyspark.sql.SQLContext._instantiatedContext = None
        sql_ctx = pyspark.sql.SQLContext(spark_context, spark_session)
        return sql_ctx

    def start_context(self, conf):
        try:
            # init the spark session
            session = pyspark.sql.SparkSession.builder.config(
                conf=conf).getOrCreate()

            # fix SQLContext for back compatibility
            self.initialize_spark_sql_context(session, session.sparkContext)

            # pyspark set log level method
            # (this will not suppress WARN before starting the context)
            session.sparkContext.setLogLevel("ERROR")

            # set the engine version
            self.version = session.version

            # set environment
            self.env = self.get_environment()

            return session
        except Exception as e:
            print(e)
            logging.error('Could not start the engine context')
            return None

    def get_environment(self):
        vars = [
            'SPARK_HOME',
            'HADOOP_HOME',
            'JAVA_HOME',
            'PYSPARK_PYTHON',
            'PYSPARK_DRIVER_PYTHON',
            'PYTHONPATH',
            'PYSPARK_SUBMIT_ARGS',
            'SPARK_DIST_CLASSPATH',
        ]

        return YamlDict({v: os.environ.get(v) for v in vars})

    def _stop(self, spark_session=None):
        self.stopped = True
        try:
            sc_from_session = spark_session.sparkContext if spark_session else None
            sc_from_engine = self.context.sparkContext if self.context else None
            sc_from_module = pyspark.SparkContext._active_spark_context or None

            scs = [sc_from_session, sc_from_engine, sc_from_module]

            if self.context:
                self.context.stop()

            if spark_session:
                spark_session.stop()

            cls = pyspark.SparkContext

            for sc in scs:
                if sc:
                    try:
                        sc.stop()
                        sc._gateway.shutdown()
                    except Exception as e:
                        pass

            cls._active_spark_context = None
            cls._gateway = None
            cls._jvm = None
        except Exception as e:
            print(e)
            logging.warning(
                f'Could not fully stop the {self.engine_type} context')

    def load_plus(self,
                  path=None,
                  provider=None,
                  catch_exception=True,
                  **kwargs):
        md = Resource(path, provider, **kwargs)

        core_start = timer()
        obj = self.load_dataframe(md, catch_exception, **kwargs)
        core_end = timer()
        if obj is None:
            return obj

        prep_start = timer()
        #date_column = '_date' if md['date_partition'] else md['date_column']
        obj = dataframe.filter_by_date(obj, date_column, md['date_start'],
                                       md['date_end'], md['date_window'])

        # partition and sorting (hmmm, needed?)
        if date_column and date_column in obj.columns:
            obj = obj.repartition(date_column)

        if '_updated' in obj.columns:
            obj = obj.sortWithinPartitions(F.desc('_updated'))

        num_rows = obj.count()
        num_cols = len(obj.columns)

        obj = dataframe.cache(obj, md['cache'])

        prep_end = timer()

        log_data = {
            'md': md,
            'mode': kwargs.get('mode',
                               md.get('options', {}).get('mode')),
            'records': num_rows,
            'columns': num_cols,
            'time': prep_end - core_start,
            'time_core': core_end - core_start,
            'time_prep': prep_end - prep_start
        }
        logging.info(log_data) if obj is not None else logging.error(log_data)

        obj.__name__ = path
        return obj

    def load_with_pandas(self, kwargs):
        logging.warning("Fallback dataframe reader")

        # conversion of *some* pyspark arguments to pandas
        kwargs.pop('inferSchema', None)

        kwargs['header'] = 'infer' if kwargs.get('header') else None
        kwargs['prefix'] = '_c'

        return kwargs

    def load_csv(self,
                 path=None,
                 provider=None,
                 *args,
                 sep=None,
                 header=None,
                 **kwargs):
        obj = None
        md = Resource(path, provider, sep=sep, header=header, **kwargs)

        # download if necessary
        md = get_local(md)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['header'] = options.get('header') or True
        options['inferSchema'] = options.get('inferSchema') or True
        options['sep'] = options.get('sep') or ','

        local = self.is_spark_local()

        try:
            #three approaches: local, cluster, and service
            if md['service'] == 'file' and local:
                obj = self.context.read.options(**options).csv(md['url'])
            elif md['service'] == 'file':
                logging.warning(
                    f'local file + spark cluster: loading using pandas reader',
                    extra={'md': to_dict(md)})

                df = pd.read_csv(md['url'],
                                 sep=options['sep'],
                                 header=options['header'])
                obj = self.context.createDataFrame(df)
            elif md['service'] in ['hdfs', 's3a']:
                obj = self.context.read.options(**options).csv(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return obj

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(str(e), extra={'md': md})

        return obj

    def load_parquet(self,
                     path=None,
                     provider=None,
                     *args,
                     mergeSchema=None,
                     **kwargs):
        obj = None

        md = Resource(path,
                      provider,
                      format='parquet',
                      mergeSchema=mergeSchema,
                      **kwargs)

        # download if necessary
        md = get_local(md)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['mergeSchema'] = options.get('mergeSchema') or True

        local = self.is_spark_local()

        try:
            #three approaches: local, cluster, and service
            if md['service'] == 'file' and local:
                obj = self.context.read.options(**options).parquet(md['url'])
            elif md['service'] == 'file':
                logging.warning(
                    f'local file + spark cluster: loading using pandas reader',
                    extra={'md': to_dict(md)})
                #fallback to the pandas reader, then convert to spark
                df = pd.read_parquet(md['url'])
                obj = self.context.createDataFrame(df)
            elif md['service'] in ['hdfs', 's3a']:
                obj = self.context.read.options(**options).parquet(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return obj

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(str(e), extra={'md': md})

        return obj

    def load_json(self, path=None, provider=None, *args, lines=True, **kwargs):
        obj = None

        md = Resource(path, provider, format='json', lines=lines, **kwargs)

        # download if necessary
        md = get_local(md)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['lines'] = options.get('lines') or True
        options['inferSchema'] = options.get('inferSchema') or True

        local = self.is_spark_local()

        try:
            #three approaches: local, cluster, and service
            if md['service'] == 'file' and options['lines']:
                obj = self.context.read.options(**options).json(md['url'])
            elif md['service'] == 'file':
                # fallback to the pandas reader,
                # then convert to spark
                logging.warning(
                    f'local file + spark cluster: loading using pandas reader',
                    extra={'md': to_dict(md)})
                df = pd.read_json(md['url'], lines=options['lines'])
                obj = self.context.createDataFrame(df)
            elif md['service'] in ['hdfs', 's3a']:
                obj = self.context.read.options(**options).json(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return obj

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(str(e), extra={'md': md})

        return obj

    def load_jdbc(self, path=None, provider=None, *args, **kwargs):
        obj = None

        md = Resource(path, provider, format='jdbc', **kwargs)

        options = md['options']

        try:
            if md['service'] in [
                    'sqlite', 'mysql', 'postgres', 'mssql', 'clickhouse',
                    'oracle'
            ]:
                obj = self.context.read \
                    .format('jdbc') \
                    .option('url', md['url']) \
                    .option("dbtable", md['table']) \
                    .option("driver", md['driver']) \
                    .option("user", md['user']) \
                    .option('password', md['password']) \
                    .options(**options)
                # load the data from jdbc
                obj = obj.load(**kwargs)
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return obj

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(str(e), extra={'md': md})

        return obj

    def load_mongo(self, path=None, provider=None, *args, **kwargs):
        obj = None

        md = Resource(path, provider, format='mongo', **kwargs)

        options = md['options']

        try:
            if md['service'] == 'mongodb':
                obj = self.context.read \
                    .format('mongo') \
                    .option('uri', md['url']) \
                    .options(**options)

                # load the data
                obj = obj.load(**kwargs)
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return obj

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(str(e), extra={'md': md})

        return obj

    def load_event_log(self,
                       path=None,
                       provider=None,
                       versionAsOf=None,
                       *args,
                       **kwargs):
        obj = None

        md = Resource(path, provider, format='event_log', **kwargs)

        options = md['options']

        try:
            if md['service'] in ['hdfs', 's3a']:
                version = self.find_version(versionAsOf, path, provider)
                if not version:
                    logging.error('No version of data detected',
                                  extra={'md': md})
                    return obj
                version = version.strftime('%Y-%m-%d-%H-%M-%S')
                url = f'{md["url"]}/_version={version}'
                obj = self.context.read.options(**options).parquet(url)
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return obj

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error(str(e), extra={'md': md})

        return obj

    def load(self, path=None, provider=None, *args, format=None, **kwargs):

        md = Resource(path, provider, format=format, **kwargs)

        if md['format'] == 'csv':
            return self.load_csv(path, provider, **kwargs)
        elif md['format'] == 'json':
            return self.load_json(path, provider, **kwargs)
        elif md['format'] == 'parquet':
            return self.load_parquet(path, provider, **kwargs)
        elif md['format'] == 'jdbc':
            return self.load_jdbc(path, provider, **kwargs)
        elif md['format'] == 'mongo':
            return self.load_mongo(path, provider, **kwargs)
        elif md['format'] == 'event_log':
            return self.load_event_log(path, provider, **kwargs)
        else:
            logging.error(f'Unknown resource format "{md["format"]}"',
                          extra={'md': to_dict(md)})
        return None

    def save_plus(self, obj, path=None, provider=None, **kwargs):
        md = Resource(path, provider, **kwargs)

        prep_start = timer()
        options = md['options'] or {}

        if md['date_partition'] and md['date_column']:
            tzone = 'UTC' if self._timestamps == 'naive' else self._timezone
            obj = dataframe.add_datetime_columns(obj,
                                                 column=md['date_column'],
                                                 tzone=tzone)
            kwargs['partitionBy'] = ['_date'] + kwargs.get(
                'partitionBy', options.get('partitionBy', []))

        if md['update_column']:
            obj = dataframe.add_update_column(obj, tzone=self._timezone)

        if md['hash_column']:
            obj = dataframe.add_hash_column(obj,
                                            cols=md['hash_column'],
                                            exclude_cols=[
                                                '_date', '_datetime',
                                                '_updated', '_hash', '_state'
                                            ])

        date_column = '_date' if md['date_partition'] else md['date_column']
        obj = dataframe.filter_by_date(obj, date_column, md['date_start'],
                                       md['date_end'], md['date_window'])

        obj = dataframe.cache(obj, md['cache'])

        num_rows = obj.count()
        num_cols = len(obj.columns)

        # force 1 file per partition, just before saving
        obj = obj.repartition(1, *kwargs['partitionBy']) if kwargs.get(
            'partitionBy') else obj.repartition(1)
        # obj = obj.coalesce(1)

        prep_end = timer()

        core_start = timer()
        result = self.save_dataframe(obj, md, **kwargs)
        core_end = timer()

        log_data = {
            'md': dict(md),
            'mode': kwargs.get('mode', options.get('mode')),
            'records': num_rows,
            'columns': num_cols,
            'time': core_end - prep_start,
            'time_core': core_end - core_start,
            'time_prep': prep_end - prep_start
        }

        logging.info(log_data) if result else logging.error(log_data)

        return result

    def is_spark_local(self):
        return self.conf.get('spark.master').startswith('local[')

    def directory_to_file(self, path):
        if os.path.exists(path) and os.path.isfile(path):
            return

        dirname = os.path.dirname(path)
        basename = os.path.basename(path)

        filename = list(
            filter(lambda x: x.startswith('part-'), os.listdir(path)))
        if len(filename) != 1:
            if len(filename) > 1:
                logging.warning(
                    'cannot convert if more than a partition present')
            return
        else:
            filename = filename[0]

        shutil.move(os.path.join(path, filename), dirname)
        if os.path.exists(path) and os.path.isdir(path):
            shutil.rmtree(path)

        shutil.move(os.path.join(dirname, filename),
                    os.path.join(dirname, basename))
        return

    def save_parquet(self,
                     obj,
                     path=None,
                     provider=None,
                     *args,
                     mode=None,
                     **kwargs):

        md = Resource(path, provider, format='parquet', mode=mode, **kwargs)
        options = md['options']

        # after collecting from metadata, or method call, define defaults
        options['mode'] = options['mode'] or 'overwrite'

        local = self.is_spark_local()

        try:
            #three approaches: file-local, local+cluster, and service
            if md['service'] == 'file' and local:
                obj.coalesce(1).write\
                    .format('parquet')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .parquet(md['url'])

            elif md['service'] == 'file':
                if os.path.exists(md['url']) and os.path.isdir(md['url']):
                    shutil.rmtree(md['url'])

                # save with pandas
                obj.toPandas().to_parquet(md['url'], mode=options['mode'])

            elif md['service'] in ['hdfs', 's3a']:
                obj.write\
                     .format('parquet')\
                     .mode(options['mode'])\
                     .options(**options)\
                     .parquet(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        return True

    def save_csv(self,
                 obj,
                 path=None,
                 provider=None,
                 *args,
                 mode=None,
                 sep=None,
                 header=None,
                 **kwargs):

        md = Resource(path,
                      provider,
                      format='csv',
                      mode=mode,
                      sep=sep,
                      header=header,
                      **kwargs)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['header'] = options['header'] or 'true'
        options['sep'] = options['sep'] or ','
        options['mode'] = options['mode'] or 'overwrite'

        local = self.is_spark_local()

        try:
            #three approaches: file+local, file+cluster, and service
            if md['service'] == 'file' and local:
                obj.coalesce(1).write\
                    .format('csv')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .csv(md['url'])
                self.directory_to_file(md['url'])

            elif md['service'] == 'file':
                if os.path.exists(md['url']) and os.path.isdir(md['url']):
                    shutil.rmtree(md['url'])

                # save with pandas
                obj.toPandas().to_csv(md['url'],
                                      mode=options['mode'],
                                      header=options['header'],
                                      sep=options['sep'])

            elif md['service'] in ['hdfs', 's3a']:
                obj.write\
                    .format('csv')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .csv(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        return True

    def save_json(self,
                  obj,
                  path=None,
                  provider=None,
                  *args,
                  mode=None,
                  lines=None,
                  **kwargs):

        md = Resource(path,
                      provider,
                      format='csv',
                      mode=mode,
                      lines=lines,
                      **kwargs)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['mode'] = options['mode'] or 'overwrite'
        options['lines'] = options['lines'] or True

        local = self.is_spark_local()

        try:
            #three approaches: local, cluster, and service
            if local and md['service'] == 'file' and options['lines']:
                obj.coalesce(1).write\
                    .format('json')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .json(md['url'])
                self.directory_to_file(md['url'])

            elif md['service'] == 'file':
                # fallback, use pandas
                # save single files, not directories
                if os.path.exists(md['url']) and os.path.isdir(md['url']):
                    shutil.rmtree(md['url'])

                # save with pandas
                obj.toPandas().to_json(md['url'],
                                       mode=options['mode'],
                                       lines=options['lines'])

            elif md['service'] in ['hdfs', 's3a']:
                obj.write\
                    .format('json')\
                    .mode(options['mode'])\
                    .options(**options)\
                    .json(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        return True

    def save_jdbc(self,
                  obj,
                  path=None,
                  provider=None,
                  *args,
                  mode=None,
                  **kwargs):
        md = Resource(path, provider, format='jdbc', mode=mode, **kwargs)

        options = md['options']

        # after collecting from metadata, or method call, define csv defaults
        options['mode'] = options['mode'] or 'overwrite'

        try:
            #three approaches: local, cluster, and service
            if md['service'] in [
                    'sqlite', 'mysql', 'postgres', 'mssql', 'clickhouse',
                    'oracle'
            ]:
                obj.write \
                    .format('jdbc') \
                    .option('url', md['url']) \
                    .option("dbtable", md['table']) \
                    .option("driver", md['driver']) \
                    .option("user", md['user']) \
                    .option('password', md['password']) \
                    .options(**options) \
                    .mode(options['mode'])\
                    .save()
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        return True

    def save_mongo(self, path=None, provider=None, *args, **kwargs):
        md = Resource(path, provider, format='mongo', **kwargs)

        options = md['options']

        try:
            if md['service'] == 'mongodb':
                obj.write \
                    .format('mongo') \
                    .option('uri', md['url']) \
                    .options(**options) \
                    .mode(options['mode']) \
                    .save(**kwargs)
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        return True

    def save_event_log(self,
                       obj,
                       path=None,
                       provider=None,
                       *args,
                       mode=None,
                       partitionBy=None,
                       **kwargs):

        md = Resource(path, provider, format='event_log', mode=mode, **kwargs)
        options = md['options']

        # after collecting from metadata, or method call, define defaults
        options['mode'] = options['mode'] or 'append'
        try:
            if md['service'] in ['hdfs', 's3a']:
                obj = dataframe.add_version_column(obj)
                partitionBy = ['_version'] + (partitionBy or [])
                obj.write\
                    .format('parquet')\
                    .mode(options['mode'])\
                    .partitionBy(partitionBy)\
                    .options(**options)\
                    .parquet(md['url'])
            else:
                logging.error(f'Unknown resource service "{md["service"]}"',
                              extra={'md': to_dict(md)})
                return False

        except AnalysisException as e:
            logging.error(str(e), extra={'md': md})
        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        return True

    def save(self,
             obj,
             path=None,
             provider=None,
             *args,
             format=None,
             mode=None,
             **kwargs):

        md = Resource(path, provider, format=format, mode=mode, **kwargs)

        if md['format'] == 'csv':
            return self.save_csv(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'tsv':
            kwargs['sep'] = '\t'
            return self.save_csv(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'json':
            return self.save_json(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'jsonl':
            return self.save_json(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'parquet':
            return self.save_parquet(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'jdbc':
            return self.save_jdbc(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'mongo':
            return self.save_mongo(obj, path, provider, mode=mode, **kwargs)
        elif md['format'] == 'event_log':
            return self.save_event_log(obj,
                                       path,
                                       provider,
                                       mode=mode,
                                       **kwargs)
        else:
            logging.error(f'Unknown format "{md["service"]}"',
                          extra={'md': md})
            return False

    def copy(self, md_src, md_trg, mode='append'):
        # timer
        timer_start = timer()

        # src dataframe
        df_src = self.load(md_src)

        # if not path on target, get it from src
        if not md_trg['resource_path']:
            md_trg = resource.metadata(self._rootdir, self._metadata,
                                       md_src['resource_path'],
                                       md_trg['provider_alias'])

        # logging
        log_data = {
            'src_hash': md_src['hash'],
            'src_path': md_src['resource_path'],
            'trg_hash': md_trg['hash'],
            'trg_path': md_trg['resource_path'],
            'mode': mode,
            'updated': False,
            'records_read': 0,
            'records_add': 0,
            'records_del': 0,
            'columns': 0,
            'time': timer() - timer_start
        }

        # could not read source, log error and return
        if df_src is None:
            logging.error(log_data)
            return

        num_rows = df_src.count()
        num_cols = len(df_src.columns)

        # empty source, log notice and return
        if num_rows == 0 and mode == 'append':
            log_data['time'] = timer() - timer_start
            logging.notice(log_data)
            return

        # overwrite target, save, log notice/error and return
        if mode == 'overwrite':
            if md_trg['state_column']:
                df_src = df_src.withColumn('_state', F.lit(0))

            result = self.save(df_src, md_trg, mode=mode)

            log_data['time'] = timer() - timer_start
            log_data['records_read'] = num_rows
            log_data['records_add'] = num_rows
            log_data['columns'] = num_cols

            logging.notice(log_data) if result else logging.error(log_data)
            return

        # trg dataframe (if exists)
        try:
            df_trg = self.load(md_trg, catch_exception=False)
        except:
            df_trg = dataframe.empty(df_src)

        # de-dup (exclude the _updated column)

        # create a view from the extracted log
        df_trg = dataframe.view(df_trg)

        # capture added records
        df_add = dataframe.diff(
            df_src, df_trg,
            ['_date', '_datetime', '_updated', '_hash', '_state'])
        rows_add = df_add.count()

        # capture deleted records
        rows_del = 0
        if md_trg['state_column']:
            df_del = dataframe.diff(
                df_trg, df_src,
                ['_date', '_datetime', '_updated', '_hash', '_state'])
            rows_del = df_del.count()

        updated = (rows_add + rows_del) > 0

        num_cols = len(df_add.columns)
        num_rows = max(df_src.count(), df_trg.count())

        # save diff
        if updated:
            if md_trg['state_column']:
                df_add = df_add.withColumn('_state', F.lit(0))
                df_del = df_del.withColumn('_state', F.lit(1))

                df = df_add.union(df_del)
            else:
                df = df_add

            result = self.save(df, md_trg, mode=mode)
        else:
            result = True

        log_data.update({
            'updated': updated,
            'records_read': num_rows,
            'records_add': rows_add,
            'records_del': rows_del,
            'columns': num_cols,
            'time': timer() - timer_start
        })

        logging.notice(log_data) if result else logging.error(log_data)

    def find_version(self, versionAsOf=None, path=None, provider=None):
        try:
            versions = self.list(provider, path)
        except:
            return None

        versions = versions.filter(F.col('name').like('_version=%'))\
                           .select(F.to_timestamp(F.split(F.col('name'), '=').getItem(1), 'yyyy-MM-dd-HH-mm-ss')\
                           .alias('version'))
        if versionAsOf:
            versions = versions.filter(F.col('version') <= versionAsOf)
        version = versions.agg(F.max('version').alias('max')).collect()
        return version[0].max if version else None

    def list(self, provider, path=''):
        df_schema = T.StructType([
            T.StructField('name', T.StringType(), True),
            T.StructField('type', T.StringType(), True)
        ])

        df_empty = self.context.createDataFrame(data=(), schema=df_schema)
        md = Resource(path, provider)

        try:
            if md['service'] in ['local', 'file']:
                lst = []
                rootpath = os.path.join(md['url'], path)
                for f in os.listdir(rootpath):
                    fullpath = os.path.join(rootpath, f)
                    if os.path.isfile(fullpath):
                        obj_type = 'FILE'
                    elif os.path.isdir(fullpath):
                        obj_type = 'DIRECTORY'
                    elif os.path.islink(fullpath):
                        obj_type = 'LINK'
                    elif os.path.ismount(fullpath):
                        obj_type = 'MOUNT'
                    else:
                        obj_type = 'UNDEFINED'

                    obj_name = f
                    lst += [(obj_name, obj_type)]

                if lst:
                    df = self.context.createDataFrame(lst, ['name', 'type'])
                else:
                    df = df_empty

                return df

            elif md['service'] in ['hdfs', 'minio', 's3a']:
                sc = self.context._sc
                URI = sc._gateway.jvm.java.net.URI
                Path = sc._gateway.jvm.org.apache.hadoop.fs.Path
                FileSystem = sc._gateway.jvm.org.apache.hadoop.fs.FileSystem
                fs = FileSystem.get(URI(md['url']),
                                    sc._jsc.hadoopConfiguration())
                obj = fs.listStatus(Path(md['url']))
                lst = []
                for i in range(len(obj)):
                    if obj[i].isFile():
                        obj_type = 'FILE'
                    elif obj[i].isDirectory():
                        obj_type = 'DIRECTORY'
                    else:
                        obj_type = 'UNDEFINED'

                    obj_name = obj[i].getPath().getName()
                    lst += [(obj_name, obj_type)]

                if lst:
                    df = self.context.createDataFrame(lst, ['name', 'type'])
                else:
                    df = df_empty

                return df

            elif md['format'] == 'jdbc':
                # remove options from database, if any
                database = md["database"].split('?')[0]
                schema = md['schema']
                if md['service'] == 'mssql':
                    query = f"""
                            ( SELECT table_name, table_type
                              FROM information_schema.tables
                              WHERE table_schema='{schema}'
                            ) as query
                            """
                elif md['service'] == 'oracle':
                    query = f"""
                            ( SELECT table_name, table_type
                             FROM all_tables
                             WHERE owner='{schema}'
                            ) as query
                            """
                elif md['service'] == 'mysql':
                    query = f"""
                            ( SELECT table_name, table_type
                              FROM information_schema.tables
                              WHERE table_schema='{schema}'
                            ) as query
                            """
                elif md['service'] == 'postgres':
                    query = f"""
                            ( SELECT table_name, table_type
                              FROM information_schema.tables
                              WHERE table_schema = '{schema}'
                            ) as query
                            """
                else:
                    # vanilla query ... for other databases
                    query = f"""
                            ( SELECT table_name, table_type
                              FROM information_schema.tables'
                            ) as query
                            """

                obj = self.context.read \
                    .format('jdbc') \
                    .option('url', md['url']) \
                    .option("dbtable", query) \
                    .option("driver", md['driver']) \
                    .option("user", md['user']) \
                    .option('password', md['password']) \
                    .load()

                # load the data from jdbc
                lst = []
                for x in obj.select('table_name', 'table_type').collect():
                    lst.append((x.table_name, x.table_type))

                if lst:
                    df = self.context.createDataFrame(lst, ['name', 'type'])
                else:
                    df = df_empty

                return df

            else:
                logging.error({
                    'md':
                    md,
                    'error_msg':
                    f'List resource on service "{md["service"]}" not implemented'
                })
                return df_empty
        except Exception as e:
            logging.error({'md': md, 'error_msg': str(e)})
            raise e

        return df_empty
コード例 #10
0
    def __init__(self,
                 session_name=None,
                 session_id=0,
                 master='local[*]',
                 timezone=None,
                 jars=None,
                 packages=None,
                 pyfiles=None,
                 files=None,
                 repositories=None,
                 services=None,
                 conf=None):

        #call base class
        # stop the previous instance,
        # register self a the new instance
        super().__init__('spark', session_name, session_id)

        # bundle all submit in a dictionary
        self.submit = {
            'jars': [jars] if isinstance(jars, str) else jars or [],
            'packages':
            [packages] if isinstance(packages, str) else packages or [],
            'py-files':
            [pyfiles] if isinstance(pyfiles, str) else pyfiles or [],
            'files': [files] if isinstance(files, str) else files or [],
            'repositories': [repositories]
            if isinstance(repositories, str) else repositories or [],
            'conf':
            conf or {}
        }

        # suppress INFO logging for java_gateway
        python_logging.getLogger('py4j.java_gateway').setLevel(
            python_logging.ERROR)

        # collect info
        self.set_info()

        # detect packages and configuration from services
        detected = self.detect_submit_params(services)

        # merge up with those passed with the init
        for k in self.submit.keys() - {'conf'}:
            self.submit[k] = list(sorted(set(self.submit[k] + detected[k])))
        self.submit['conf'] = merge(detected['conf'], self.submit['conf'])

        #set submit args via env variable
        self.set_submit_args()

        # set other spark-related environment variables
        self.set_env_variables()

        # set spark conf object
        print(f"Connecting to spark master: {master}")

        conf = pyspark.SparkConf()
        self.set_conf_timezone(conf, timezone)

        # set session name
        conf.setAppName(session_name)

        # set master
        conf.setMaster(master)

        # config passed through the api call go via the config
        for c in self.submit['conf']:
            k, v, *_ = list(c) + ['']
            if isinstance(v, (bool, int, float, str)):
                conf.set(k, v)

        # stop the current session if running
        self._stop()

        # start spark
        spark_session = self.start_context(conf)

        # record the data in the engine object for debug and future references
        self.conf = YamlDict(dict(conf.getAll()))

        if spark_session:
            self.conf = dict(
                dict(spark_session.sparkContext.getConf().getAll()))

            # set version if spark is loaded
            self._version = spark_session.version
            print(
                f'Engine context {self.engine_type}:{self.version} successfully started'
            )

            # store the spark session
            self.context = spark_session

            # session is running
            self.stopped = False
コード例 #11
0
ファイル: metadata.py プロジェクト: icrona/datafaucet
 def info(self):
     return YamlDict(self._info)
コード例 #12
0
class Metadata(metaclass=Singleton):
    def __init__(self):
        self._info = {'files': dict(), 'profiles': set(), 'active': None}
        self._profile = dict()

    # metadata files are cached once read the first time
    def read(self, file_paths=None):
        """
        Return all profiles, stored in a nested dictionary
        Profiles are merged over the list provided of provided metadata files to read.
        The order in the list of metadata files determines how profile properties are override
        :param file_paths: list of yaml files paths
        :return: dict of profiles
        """

        # empty profiles, before start reading
        profiles = {}

        if not file_paths:
            file_paths = []

        self._info['files'] = []
        for filename in file_paths:
            if os.path.isfile(filename):
                with open(filename, 'r') as f:
                    try:
                        docs = list(yaml.load_all(f))
                        self._info['files'].append(filename)
                    except yaml.YAMLError as e:
                        if hasattr(e, 'problem_mark'):
                            mark = e.problem_mark
                            logging.error(
                                "Error loading yml file {} at position: (%s:%s): skipping file"
                                .format(filename, mark.line + 1,
                                        mark.column + 1))
                            docs = []
                    finally:
                        for doc in docs:
                            doc['profile'] = doc.get('profile', 'default')
                            profiles[doc['profile']] = merge(
                                profiles.get(doc['profile'], {}), doc)

        self._info['profiles'] = sorted(list(profiles.keys()))

        return profiles

    def inherit(self, profiles):
        """
        Profiles inherit from a default profile.
        Inherit merges each profile with the configuration of the default profile.
        :param profiles: dict of profiles
        :return: dict of profiles
        """

        # inherit from default for all other profiles
        for k in profiles.get('default', {}).keys():
            for p in set(profiles.keys()) - {'default'}:
                profiles[p][k] = merge(profiles['default'][k],
                                       profiles[p].get(k))

        return profiles

    def render(self, metadata, max_passes=5):
        """
        Renders jinja expressions in the given input metadata.
        jinja templates can refer to the dictionary itself for variable substitution

        :param metadata: profile dict, values may contain jinja templates
        :param max_passes: max number of rendering passes
        :return: profile dict, rendered jinja templates if present
        """

        env = Environment()

        def env_func(key, value=None):
            return os.getenv(key, value)

        def now_func(tz='UTC', format='%Y-%m-%d %H:%M:%S'):
            dt = datetime.now(pytz.timezone(tz))
            return datetime.strftime(dt, format)

        env.globals['env'] = env_func
        env.globals['now'] = now_func

        doc = json.dumps(metadata)

        rendered = metadata

        for i in range(max_passes):
            dictionary = json.loads(doc)

            # rendering with jinja
            template = env.from_string(doc)
            doc = template.render(dictionary)

            # all done, or more rendering required?
            rendered = json.loads(doc)
            if dictionary == rendered:
                break

        return rendered

    def v(self, d, schema):
        try:
            jsonschema.validate(d, schema)
            return
        except jsonschema.exceptions.ValidationError as e:
            msg_error = f'{e.message} \n\n## schema path:\n'
            msg_error += f'\'{"/".join(e.schema_path)}\'\n\n'
            msg_error += f'## metadata schema definition '
            msg_error += f'{"for " + str(e.parent) if e.parent else ""}:'
            msg_error += f'\n{yaml.dump(e.schema)}'
            self.raiseException(msg_error)

    def validate_schema(self, md, schema_filename):
        dir_path = os.path.dirname(os.path.realpath(__file__))
        filename = os.path.abspath(
            os.path.join(dir_path, 'schemas/{}'.format(schema_filename)))
        with open(filename) as f:
            self.v(md, yaml.load(f))

    def validate(self, md):
        # validate data structure
        self.validate_schema(md, 'top.yml')

        # for d in md['providers']:
        #     _validate_schema(d, 'provider.yml')
        #
        # for d in md['resources']:
        #     _validate_schema(d, 'resource.yml')

        # validate semantics
        providers = md.get('providers', {}).keys()
        for resource_alias, r in md.get('resources', {}).items():
            resource_provider = r.get('provider')
            if resource_provider and resource_provider not in providers:
                print(
                    f'resource {resource_alias}: given provider "{resource_provider}" '
                    'does not match any metadata provider')

    def formatted(self, md):
        keys = (
            'profile',
            'variables',
            (
                'engine',
                ('type', 'master', 'timezone', 'repositories', 'jars',
                 'packages', 'files', 'conf', 'detect'),
            ),
            'providers',
            'resources',
            ('logging', ('level', 'stdout', 'file', 'kafka')),
        )

        d = to_ordered_dict(md, keys)

        if d['variables']:
            d['variables'] = dict(sorted(d['variables'].items()))

        return d

    def debug_metadata_files(self):
        message = '\nList of loaded metadata files:\n'
        if self._info['files']:
            for f in self._info['files']:
                message += f'  - {f}\n'
        else:
            message += 'None'

        return message

    def debug_profiles(self):
        message = '\nList of available profiles:\n'
        if self._info['profiles']:
            for f in self._info['profiles']:
                message += f'  - {f}\n'
        else:
            message += 'None'

        return message

    def raiseException(self, message=''):
        message += '\n'
        message += self.debug_metadata_files()
        message += self.debug_profiles()
        raise ValueError(message)

    def load(self,
             profile_name='default',
             metadata_files=None,
             dotenv_path=None,
             parameters=None):
        """
        Load the profile, given a list of yml files and a .env filename
        profiles inherit from the defaul profile, a profile not found will contain the same elements as the default profile

        :param profile_name: the profile to load (default: 'default')
        :param metadata_files: a list of metadata files to read
        :param dotenv_path: the path of a dotenv file to read
        :param parameters: optional dict, merged with metadata variables
        :return: the loaded metadata profile dict
        """

        # get metadata by scanning rootdir, if no list is provided
        if metadata_files is None:
            metadata_files = []

            # defaults metadata
            dir_path = os.path.dirname(os.path.realpath(__file__))
            metadata_files += abspath(['schemas/default.yml'], dir_path)

            # project metadata
            metadata_files += abspath(
                files.get_metadata_files(paths.rootdir()), paths.rootdir())

        # get dotenv_path by scanning rootdir, if no dotenv file is provided
        if dotenv_path is None:
            dotenv_path = abspath(files.get_dotenv_path(paths.rootdir()),
                                  paths.rootdir())

        # get env variables from .env file
        if dotenv_path and os.path.isfile(dotenv_path):
            load_dotenv(dotenv_path)

        profiles = self.read(metadata_files)

        # empty profile if profile not found
        if profile_name not in self._info['profiles']:
            self.raiseException(f'Profile "{profile_name}" not found.')

        # read metadata, get the profile, if not found get an empty profile
        profiles = self.inherit(profiles)
        metadata = profiles[profile_name]

        # render any jinja templates in the profile
        md = self.render(metadata)

        # validate
        self.validate(md)

        # format
        md = self.formatted(md)

        # merge parameters from call
        if isinstance(parameters, dict):
            md['variables'] = merge(md['variables'], parameters)

        self._profile = YamlDict(md)
        self._info['active'] = profile_name

        return self

    def info(self):
        return YamlDict(self._info)

    def profile(self, section=None):
        return self._profile if section is None else self._profile.get(
            section, None)