コード例 #1
0
total_examples = len(dataset)
total_batches = total_examples // batch_size

model = build_model(ishape=ishape, mode='train', net_name=net_name)
# model.summary()
# model.load_weights('{}/weights_.h5'.format(output_path), by_name=True)

min_loss = 2**32

for epoch in range(total_epoches):
    # tf.keras.backend.set_value(model.optimizer.learning_rate, 0.001)

    gen = genxy(dataset=dataset,
                image_dir_path=image_dir_path,
                ishape=ishape,
                total_batches=total_batches,
                batch_size=batch_size)

    print('\nTrain epoch {}'.format(epoch))
    loss = np.zeros(total_batches)

    for batch in range(total_batches):
        batchx4d, batchy4d = next(gen)
        batch_loss = model.train_on_batch(batchx4d, batchy4d)
        loss[batch] = batch_loss

        print('-', end='')
        if batch % 100 == 99:
            print('{:.2f}%'.format((batch + 1) * 100 / total_batches),
                  end='\n')
コード例 #2
0
# model.load_weights('{}/weights_.h5'.format(output_path), by_name=True)

min_loss = 2**32
max_precision = 0
max_recall = 0

train_dataset = load_dataset(anno_file_path=train_anno_file_path)
test_dataset = load_dataset(anno_file_path=test_anno_file_path)

for epoch in range(total_epoches):
    # tf.keras.backend.set_value(model.optimizer.learning_rate, 0.001)

    gen = genxy(dataset=train_dataset,
                image_dir=train_image_dir,
                ishape=ishape,
                abox_2dtensor=abox_2dtensor,
                iou_thresholds=iou_thresholds,
                total_examples=total_train_examples,
                total_classes=total_classes,
                anchor_sampling=anchor_sampling)

    print('\nTrain epoch {}'.format(epoch))
    loss = np.zeros(total_train_examples)

    for batch in range(total_train_examples):
        batchx_4dtensor, batchy_2dtensor, _ = next(gen)
        batch_loss = model.train_on_batch(batchx_4dtensor, batchy_2dtensor)
        loss[batch] = batch_loss

        print('-', end='')
        if batch % 100 == 99:
            print('{:.2f}%'.format((batch + 1) * 100 / total_train_examples),
コード例 #3
0
abox_2dtensor = tf.reshape(tensor=abox_4dtensor, shape=[-1, 4])

model = build_model(ishape=ishape, resnet_settings=resnet_settings, k=len(asizes), total_classes=total_classes)
# model.summary()
# model.load_weights('{}/weights.h5'.format(output_path), by_name=True)

min_loss = 2**32
max_precision = 0
max_recall = 0

for epoch in range(total_epoches):
	gen = genxy(
		anno_file_path=train_anno_file_path, 
		image_dir=train_image_dir, 
		ishape=ishape, 
		abox_2dtensor=abox_2dtensor, 
		iou_thresholds=iou_thresholds, 
		total_classes=total_classes, 
		anchor_sampling=anchor_sampling,
		mode='train')

	print('\nTrain epoch {}'.format(epoch))
	loss = np.zeros(total_train_examples)

	for batch in range(total_train_examples):
		batchx_4dtensor, batchy_2dtensor, _, _ = next(gen)
		batch_loss = model.train_on_batch(batchx_4dtensor, batchy_2dtensor)
		loss[batch] = batch_loss

		if batch%10==9:
			print('-', end='')
コード例 #4
0
                                              asizes=asizes[2]),
                             dtype='float32')  # (h3*w3*k3, 4)
a4box_2dtensor = tf.constant(value=genanchors(isize=ishape[:2],
                                              ssize=ssizes[3],
                                              asizes=asizes[3]),
                             dtype='float32')  # (h4*w4*k4, 4)
abox_2dtensors = [
    a1box_2dtensor, a2box_2dtensor, a3box_2dtensor, a4box_2dtensor
]
abox_2dtensor = tf.concat(values=abox_2dtensors, axis=0)

dataset = load_dataset(anno_file_path=anno_file_path)
gen = genxy(dataset=dataset,
            image_dir=image_dir,
            ishape=ishape,
            abox_2dtensors=abox_2dtensors,
            iou_thresholds=iou_thresholds,
            total_examples=total_examples,
            total_classes=total_classes,
            anchor_samplings=anchor_samplings)

for _ in range(total_examples):
    print('{}: 1'.format(datetime.now().time()), end='\n')
    batchx_4dtensor, batchy_2dtensor, bboxes = next(gen)
    print('{}: 2'.format(datetime.now().time()), end='\n')
    pix = batchx_4dtensor[0]

    clz_2dtensor = batchy_2dtensor[:, :total_classes +
                                   1]  # (h*w*k, total_classes+1)
    sum_clz_2dtensor = tf.math.reduce_sum(input_tensor=clz_2dtensor,
                                          axis=-1)  # (h*w*k,)