exp_name = args.exp #get parameters params = getParams(exp_name) #set common variables epochs = params['epochs'] batch_size = params['batch_size'] verbose = params['verbose'] val_to_monitor = params['val_to_monitor'] resetSeed() #Get data and generators dh = DataHandler() tr_images, tr_masks, te_images, te_masks = dh.getData() train_generator = getGenerator(tr_images, tr_masks, augmentation = False, batch_size=batch_size) val_generator = getGenerator(te_images, te_masks, augmentation = False, batch_size=batch_size) #Get model and add weights model = getUnet() #load weights from other problem transfer learning #model.load_weights('./weights/unet_transfer.h5') # print(model.summary())
from models.unet import * from datahandler import DataHandler import os import skimage.io as io from tqdm import tqdm from math import ceil # TODO remove this import warnings warnings.filterwarnings("ignore") model = getUnet() model.load_weights('logs/unet/unet_dice_nobells/unet_dice_nobells_weights.h5') dh = DataHandler() images, masks = dh.getData(only_test=True) # save_path = './data/test_results/' # for i, img in enumerate(tqdm(images, desc='Saving Imgs')): # io.imsave(os.path.join(save_path,"%d_img.png"%i), np.squeeze(img)) # io.imsave(os.path.join(save_path,"%d_mask.png"%i), np.squeeze(masks[i])) def resetSeed(): np.random.seed(1) def getGenerator(images): resetSeed() image_datagen = ImageDataGenerator(rescale=1. / 255)