コード例 #1
0
ファイル: stack.py プロジェクト: zhoupc/ease
    def notify(self, key):
        import seaborn as sns

        y_shifts, x_shifts = (MotionCorrection() & key).fetch1(
            'y_shifts', 'x_shifts')
        fps, is_slow_stack = (StackInfo.ROI() & key).fetch1('fps', 'is_slow')
        num_slices, num_frames = y_shifts.shape
        fps = fps * (num_slices if is_slow_stack else 1)
        seconds = np.arange(num_frames) / fps

        with sns.axes_style('white'):
            fig, axes = plt.subplots(2,
                                     1,
                                     figsize=(13, 10),
                                     sharex=True,
                                     sharey=True)
        axes[0].set_title('Shifts in y for all slices')
        axes[0].set_ylabel('Pixels')
        axes[0].plot(seconds, y_shifts.T)
        axes[1].set_title('Shifts in x for all slices')
        axes[1].set_ylabel('Pixels')
        axes[1].set_xlabel('Seconds')
        axes[1].plot(seconds, x_shifts.T)
        fig.tight_layout()
        img_filename = '/tmp/' + key_hash(key) + '.png'
        fig.savefig(img_filename)
        plt.close(fig)
        sns.reset_orig()

        msg = 'MotionCorrection for `{}` has been populated.'.format(key)
        (notify.SlackUser() & (experiment.Session() & key)).notify(
            msg, file=img_filename, file_title='motion shifts')
コード例 #2
0
ファイル: pupil.py プロジェクト: zhoupc/ease
 def notify(self, key, frames):
     import imageio
     msg = 'Eye for `{}` has been populated. You can add a tracking task now. '.format(key)
     img_filename = '/tmp/' + key_hash(key) + '.gif'
     frames = frames.transpose([2, 0, 1])
     frames = [imresize(img, 0.25) for img in frames]
     imageio.mimsave(img_filename, frames, duration=0.5)
     (notify.SlackUser() & (experiment.Session() & key)).notify(msg, file=img_filename,
                                                                file_title='preview frames')
コード例 #3
0
ファイル: pupil.py プロジェクト: fabiansinz/pipeline
    def notify(self, key, frames):
        import imageio

        video_filename = '/tmp/' + key_hash(key) + '.gif'
        frames = [imresize(img, 0.25) for img in frames.transpose([2, 0, 1])]
        imageio.mimsave(video_filename, frames, duration=0.5)

        msg = 'eye frames for {animal_id}-{session}-{scan_idx}'.format(**key)
        slack_user = notify.SlackUser() & (experiment.Session() & key)
        slack_user.notify(file=video_filename, file_title=msg, channel='#pipeline_quality')
コード例 #4
0
ファイル: posture.py プロジェクト: afcarl/pipeline
    def notify(self, key, frames):
        import imageio

        video_filename = '/tmp/' + key_hash(key) + '.gif'
        frames = [imresize(img, 0.25) for img in frames.transpose([2, 0, 1])]
        imageio.mimsave(video_filename, frames, duration=0.5)

        msg = 'posture frames for {animal_id}-{session}-{scan_idx}'.format(**key)
        slack_user = notify.SlackUser() & (experiment.Session() & key)
        slack_user.notify(file=video_filename, file_title=msg, channel='#pipeline_quality')
コード例 #5
0
ファイル: stack.py プロジェクト: zhoupc/ease
    def notify(self, key):
        import imageio

        volume = (self & key).get_stack(channel=key['channel'])
        volume = volume[::int(volume.shape[0] / 8)]  # volume at 8 diff depths
        video_filename = '/tmp/' + key_hash(key) + '.gif'
        imageio.mimsave(video_filename, float2uint8(volume), duration=1)

        msg = 'CorrectedStack for {} has been populated.'.format(key)
        (notify.SlackUser() & (experiment.Session() & key)).notify(
            msg, file=video_filename, file_title='stitched ROI')
コード例 #6
0
ファイル: notify.py プロジェクト: fabiansinz/pipeline
def temporary_image(array, key):
    import matplotlib
    matplotlib.rcParams['backend'] = 'Agg'
    import matplotlib.pyplot as plt
    import seaborn as sns
    with sns.axes_style('white'):
        plt.matshow(array, cmap='gray')
        plt.axis('off')
    filename = '/tmp/' + key_hash(key) + '.png'

    plt.savefig(filename)
    sns.reset_orig()
    return filename
コード例 #7
0
ファイル: notify.py プロジェクト: xibby/pipeline
def temporary_image(array, key):
    import matplotlib
    matplotlib.rcParams['backend'] = 'Agg'
    import matplotlib.pyplot as plt
    import seaborn as sns
    with sns.axes_style('white'):
        plt.matshow(array, cmap='gray')
        plt.axis('off')
    filename = '/tmp/' + key_hash(key) + '.png'

    plt.savefig(filename)
    sns.reset_orig()
    return filename
コード例 #8
0
    def notify(self, key):
        time, velocity = (self & key).fetch1('treadmill_time', 'treadmill_vel')
        fig = plt.figure()
        plt.plot(time, velocity)
        plt.ylabel('Treadmill velocity (cm/sec)')
        plt.xlabel('Seconds')
        img_filename = '/tmp/' + key_hash(key) + '.png'
        fig.savefig(img_filename)
        plt.close(fig)

        msg = 'treadmill velocity for {animal_id}-{session}-{scan_idx}'.format(
            **key)
        slack_user = notify.SlackUser() & (experiment.Session() & key)
        slack_user.notify(file=img_filename, file_title=msg)
コード例 #9
0
    def notify(self, key):
        import matplotlib.pyplot as plt
        time, velocity = (self & key).fetch1('treadmill_time', 'treadmill_vel')
        fig = plt.figure()
        plt.plot(time, velocity)
        plt.ylabel('Treadmill velocity (cm/sec)')
        plt.xlabel('Seconds')
        img_filename = '/tmp/' + key_hash(key) + '.png'
        fig.savefig(img_filename)
        plt.close(fig)

        msg = 'treadmill velocity for {animal_id}-{session}-{scan_idx}'.format(**key)
        slack_user = notify.SlackUser() & (experiment.Session() & key)
        slack_user.notify(file=img_filename, file_title=msg)
コード例 #10
0
ファイル: stack.py プロジェクト: zhoupc/ease
    def notify(self, key, summary_frames, mean_intensities, contrasts):
        """ Sends slack notification for a single slice + channel combination. """
        # Send summary frames
        import imageio
        video_filename = '/tmp/' + key_hash(key) + '.gif'
        percentile_99th = np.percentile(summary_frames, 99.5)
        summary_frames = np.clip(summary_frames, None, percentile_99th)
        summary_frames = float2uint8(summary_frames).transpose([2, 0, 1])
        imageio.mimsave(video_filename, summary_frames, duration=0.4)

        msg = 'Quality for `{}` has been populated.'.format(key)
        (notify.SlackUser() & (experiment.Session() & key)).notify(
            msg, file=video_filename, file_title='summary frames')

        # Send intensity and contrasts
        figsize = (min(4, contrasts.shape[1] / 10 + 1),
                   contrasts.shape[0] / 30 + 1)  # set heuristically
        fig, axes = plt.subplots(1,
                                 2,
                                 figsize=figsize,
                                 sharex=True,
                                 sharey=True)
        fig.tight_layout()
        axes[0].set_title('Mean intensity', size='small')
        axes[0].imshow(mean_intensities)
        axes[0].set_ylabel('Slices')
        axes[0].set_xlabel('Frames')
        axes[1].set_title('Contrast (99 - 1 percentile)', size='small')
        axes[1].imshow(contrasts)
        axes[1].set_xlabel('Frames')
        img_filename = '/tmp/' + key_hash(key) + '.png'
        fig.savefig(img_filename, bbox_inches='tight')
        plt.close(fig)

        (notify.SlackUser() & (experiment.Session() & key)).notify(
            file=img_filename, file_title='quality images')
コード例 #11
0
ファイル: temperature.py プロジェクト: xibby/pipeline
    def notify(self, key):
        ts, temperatures = (self & key).fetch1('temp_time', 'temperatures')

        import matplotlib.pyplot as plt
        fig = plt.figure(figsize=(10, 5))
        plt.plot(ts, temperatures)
        plt.ylabel('Temperature (C)')
        plt.xlabel('Seconds')
        img_filename = '/tmp/' + key_hash(key) + '.png'
        fig.savefig(img_filename)
        plt.close(fig)

        msg = 'temperature for {animal_id}-{session}-{scan_idx}'.format(**key)
        slack_user = notify.SlackUser() & (experiment.Session() & key)
        slack_user.notify(file=img_filename, file_title=msg)
コード例 #12
0
    def notify(self, key):
        ts, temperatures = (self & key).fetch1('temp_time', 'temperatures')

        import matplotlib.pyplot as plt
        fig = plt.figure(figsize=(10, 5))
        plt.plot(ts, temperatures)
        plt.ylabel('Temperature (C)')
        plt.xlabel('Seconds')
        img_filename = '/tmp/' + key_hash(key) + '.png'
        fig.savefig(img_filename)
        plt.close(fig)

        msg = 'temperature for {animal_id}-{session}-{scan_idx}'.format(**key)
        slack_user = notify.SlackUser() & (experiment.Session() & key)
        slack_user.notify(file=img_filename, file_title=msg)
コード例 #13
0
    def _make_tuples(self, key):
        import matplotlib.pyplot as plt
        import matplotlib.ticker as ticker

        # Get all field keys and timestamps
        field_key, field_ts, field_nframes, field_fps = ((experiment.Scan() * meso.ScanInfo() *
            meso.ScanInfo.Field().proj()).proj('nframes', 'fps', 'scan_ts', scan_session='session')
            & key & 'field < 10').fetch('KEY', 'scan_ts', 'nframes', 'fps', order_by='scan_ts')
        if len(field_key) == 0:
            print('Warning: No fields selected for', key)
            return
        initial_time = str(field_ts[0])
        field_ts = [(ts - field_ts[0]).seconds for ts in field_ts] # in hours
        field_duration = field_nframes / field_fps

        # Plot
        fig = plt.figure(figsize=(20, 8))
        for fk, ft, fd in zip(field_key, field_ts, field_duration):
            zs = (RegistrationOverTime() & key & fk).fetch('reg_z', order_by='frame_id')
            ts = ft + np.linspace(0, 1, len(zs) + 2)[1:-1] * fd
            plt.plot(ts / 3600, zs)
        plt.title('Registered zs for {animal_id}-{scan_session} starting {t}'.format(t=initial_time, **key))
        plt.ylabel('Registered zs')
        plt.xlabel('Hours')

        # Plot formatting
        plt.gca().invert_yaxis()
        plt.gca().yaxis.set_major_locator(ticker.MultipleLocator(10))
        plt.grid(linestyle='--', alpha=0.8)

        # Notify
        img_filename = '/tmp/' + key_hash(key) + '.png'
        fig.savefig(img_filename, bbox_inches='tight')
        plt.close(fig)

        msg = 'registration over time for {animal_id}-{scan_session} into {animal_id}-{stack_session}-{stack_idx}'.format(**key)
        slack_user = notify.SlackUser() & (experiment.Session() & key & {'session': key['stack_session']})
        slack_user.notify(file=img_filename, file_title=msg, channel='#pipeline_quality')
        self.insert1(key, ignore_extra_fields=True)