def _build_outputs(self, images, labels, mode): if 'anchor_boxes' in labels: anchor_boxes = labels['anchor_boxes'] else: anchor_boxes = anchor.Anchor( self._anchor_params.min_level, self._anchor_params.max_level, self._anchor_params.num_scales, self._anchor_params.aspect_ratios, self._anchor_params.anchor_size, images.get_shape().as_list()[1:3]).multilevel_boxes backbone_features = self._backbone_fn( images, is_training=(mode == mode_keys.TRAIN)) fpn_features = self._fpn_fn(backbone_features, is_training=(mode == mode_keys.TRAIN)) cls_outputs, box_outputs = self._head_fn( fpn_features, is_training=(mode == mode_keys.TRAIN)) model_outputs = { 'cls_outputs': cls_outputs, 'box_outputs': box_outputs, } if mode != mode_keys.TRAIN: detection_results = self._generate_detections_fn( box_outputs, cls_outputs, anchor_boxes, labels['image_info'][:, 1:2, :]) model_outputs.update(detection_results) return model_outputs
def _serving_model_graph(features, params): """Build the model graph for serving.""" images = features['images'] _, height, width, _ = images.get_shape().as_list() input_anchor = anchor.Anchor(params.anchor.min_level, params.anchor.max_level, params.anchor.num_scales, params.anchor.aspect_ratios, params.anchor.anchor_size, (height, width)) model_fn = factory.model_generator(params) model_outputs = model_fn.build_outputs( features['images'], labels={'anchor_boxes': input_anchor.multilevel_boxes}, mode=mode_keys.PREDICT) if cast_num_detections_to_float: model_outputs['num_detections'] = tf.cast( model_outputs['num_detections'], dtype=tf.float32) if output_image_info: model_outputs.update({ 'image_info': features['image_info'], }) if output_normalized_coordinates: model_outputs['detection_boxes'] = box_utils.normalize_boxes( model_outputs['detection_boxes'], features['image_info'][:, 1:2, :]) return model_outputs
def _serving_model_graph(features, params): """Build the model graph for serving.""" images = features['images'] batch_size, height, width, _ = images.get_shape().as_list() input_anchor = anchor.Anchor( params.anchor.min_level, params.anchor.max_level, params.anchor.num_scales, params.anchor.aspect_ratios, params.anchor.anchor_size, (height, width)) multilevel_boxes = {} for k, v in six.iteritems(input_anchor.multilevel_boxes): multilevel_boxes[k] = tf.tile( tf.expand_dims(v, 0), [batch_size, 1, 1]) model_fn = factory.model_generator(params) model_outputs = model_fn.build_outputs( features['images'], labels={ 'anchor_boxes': multilevel_boxes, 'image_info': features['image_info'], }, mode=mode_keys.PREDICT) if cast_num_detections_to_float: model_outputs['num_detections'] = tf.cast( model_outputs['num_detections'], dtype=tf.float32) if output_image_info: model_outputs.update({ 'image_info': features['image_info'], }) if output_normalized_coordinates: model_outputs['detection_boxes'] = box_utils.normalize_boxes( model_outputs['detection_boxes'], features['image_info'][:, 1:2, :]) predictions = { 'num_detections': tf.identity( model_outputs['num_detections'], 'NumDetections'), 'detection_boxes': tf.identity( model_outputs['detection_boxes'], 'DetectionBoxes'), 'detection_classes': tf.identity( model_outputs['detection_classes'], 'DetectionClasses'), 'detection_scores': tf.identity( model_outputs['detection_scores'], 'DetectionScores'), } if 'detection_masks' in model_outputs: predictions.update({ 'detection_masks': tf.identity(model_outputs['detection_masks'], 'DetectionMasks'), }) if output_image_info: predictions['image_info'] = tf.identity( model_outputs['image_info'], 'ImageInfo') return predictions
def _build_outputs(self, images, labels, mode): batch_size = tf.shape(images)[0] if 'anchor_boxes' in labels: anchor_boxes = labels['anchor_boxes'] else: anchor_boxes = anchor.Anchor( self._params.architecture.min_level, self._params.architecture.max_level, self._params.anchor.num_scales, self._params.anchor.aspect_ratios, self._params.anchor.anchor_size, images.get_shape().as_list()[1:3]).multilevel_boxes for level in anchor_boxes: anchor_boxes[level] = tf.tile( tf.expand_dims(anchor_boxes[level], 0), [batch_size, 1, 1]) backbone_features = self._backbone_fn( images, is_training=(mode == mode_keys.TRAIN)) fpn_features = self._fpn_fn(backbone_features, is_training=(mode == mode_keys.TRAIN)) if self._params.architecture.output_flat_fpn_features: flat_fpn_features_list = [] for level in range(self._params.architecture.min_level, self._params.architecture.max_level + 1): flat_fpn_features_list.append( tf.reshape(fpn_features[level], [batch_size, -1])) flat_fpn_features = tf.concat(flat_fpn_features_list, axis=1) flat_fpn_features = tf.identity(flat_fpn_features, 'RawFpnFeatures') cls_outputs, box_outputs = self._head_fn( fpn_features, is_training=(mode == mode_keys.TRAIN)) model_outputs = { 'cls_outputs': cls_outputs, 'box_outputs': box_outputs, } tf.logging.info('Computing number of FLOPs before NMS...') static_batch_size = images.get_shape().as_list()[0] if static_batch_size: _, _ = benchmark_utils.compute_model_statistics(static_batch_size) if mode != mode_keys.TRAIN: detection_results = self._generate_detections_fn( box_outputs, cls_outputs, anchor_boxes, labels['image_info'][:, 1:2, :]) model_outputs.update(detection_results) return model_outputs
def parse_single_example(serialized_example, params): """Parses a singel serialized TFExample string.""" decoder = tf_example_decoder.TfExampleDecoder() data = decoder.decode(serialized_example) image = data['image'] source_id = data['source_id'] source_id = dataloader_utils.process_source_id(source_id) height = data['height'] width = data['width'] boxes = data['groundtruth_boxes'] boxes = box_utils.denormalize_boxes(boxes, tf.shape(image)[:2]) classes = data['groundtruth_classes'] is_crowds = data['groundtruth_is_crowd'] areas = data['groundtruth_area'] image = input_utils.normalize_image(image) image, image_info = input_utils.resize_and_crop_image( image, params.retinanet_parser.output_size, padded_size=input_utils.compute_padded_size( params.retinanet_parser.output_size, 2**params.anchor.max_level), aug_scale_min=1.0, aug_scale_max=1.0) anchors = anchor.Anchor(params.anchor.min_level, params.anchor.max_level, params.anchor.num_scales, params.anchor.aspect_ratios, params.anchor.anchor_size, image.get_shape().as_list()[:2]) labels = { 'anchor_boxes': anchors.multilevel_boxes, 'image_info': image_info, } groundtruths = { 'source_id': source_id, 'height': height, 'width': width, 'num_detections': tf.shape(classes), 'boxes': boxes, 'classes': classes, 'areas': areas, 'is_crowds': tf.cast(is_crowds, tf.int32), } return image, labels, groundtruths
def _build_outputs(self, images, labels, mode): if 'anchor_boxes' in labels: anchor_boxes = labels['anchor_boxes'] else: anchor_boxes = anchor.Anchor( self._anchor_params.min_level, self._anchor_params.max_level, self._anchor_params.num_scales, self._anchor_params.aspect_ratios, self._anchor_params.anchor_size, images.get_shape().as_list()[1:3]).multilevel_boxes batch_size = tf.shape(images)[0] for level in anchor_boxes: anchor_boxes[level] = tf.tile( tf.expand_dims(anchor_boxes[level], 0), [batch_size, 1, 1]) backbone_features = self._backbone_fn( images, is_training=(mode == mode_keys.TRAIN)) fpn_features = self._fpn_fn(backbone_features, is_training=(mode == mode_keys.TRAIN)) cls_outputs, box_outputs = self._head_fn( fpn_features, is_training=(mode == mode_keys.TRAIN)) model_outputs = { 'cls_outputs': cls_outputs, 'box_outputs': box_outputs, } tf.logging.info('Computing number of FLOPs before NMS...') _, _ = benchmark_utils.compute_model_statistics( images.get_shape().as_list()[0]) if mode != mode_keys.TRAIN: detection_results = self._generate_detections_fn( box_outputs, cls_outputs, anchor_boxes, labels['image_info'][:, 1:2, :]) model_outputs.update(detection_results) return model_outputs
def _parse_train_data_v2(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. rpn_score_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. rpn_box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. gt_boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. gt_classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. gt_masks: groundtrugh masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. """ if self._use_autoaugment: try: from utils import ( autoaugment_utils, ) # pylint: disable=g-import-not-at-top except ImportError as e: logging.exception("Autoaugment is not supported in TF 2.x.") raise e classes = data["groundtruth_classes"] boxes = data["groundtruth_boxes"] masks = None attributes = None if self._include_mask: masks = data["groundtruth_instance_masks"] if self._num_attributes: attributes = data["groundtruth_attributes"] is_crowds = data["groundtruth_is_crowd"] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(input=classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( pred=tf.greater(tf.size(input=is_crowds), 0), true_fn=lambda: tf.compat.v1.where( tf.logical_not(is_crowds))[:, 0], false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf. int64), ) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) if self._include_mask: masks = tf.gather(masks, indices) if self._num_attributes: attributes = tf.gather(attributes, indices) # Gets original image and its size. image = data["image"] # NOTE: The autoaugment method works best when used alongside the standard # horizontal flipping of images along with size jittering and normalization. if self._use_autoaugment and not self._apply_autoaugment_after_resizing: ( image, boxes, masks, ) = autoaugment_utils.distort_image_and_masks_with_autoaugment( image, boxes, masks, self._autoaugment_policy_name) # Flips image randomly during training. if self._aug_rand_hflip: if self._include_mask: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) else: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Resizes and crops image. image = tf.image.convert_image_dtype(image, dtype=tf.float32) image, image_info = input_utils.resize_and_crop_image( image, self._output_size, aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max, ) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. orig_image_shape = image_info[0] boxes = box_utils.denormalize_boxes(boxes, orig_image_shape) # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. rescaled_image_shape = tf.shape(input=image)[:2] image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, rescaled_image_shape, offset) # Filters out ground truth boxes that are all zeros. boxes, classes, masks, attributes = self._remove_empty_boxes( boxes, classes, masks, attributes) # apply the autoaugment after resizing if self._use_autoaugment and self._apply_autoaugment_after_resizing: # prepare image and boxes for the autoaugment image = tf.image.convert_image_dtype(image, dtype=tf.uint8) boxes = box_utils.normalize_boxes(boxes, rescaled_image_shape) # prepare masks for the autoaugment masks = tf.expand_dims(masks, axis=-1) scaled_mask_size = tf.cast( tf.round(orig_image_shape * image_scale), tf.int32) scaled_masks = tf.image.resize( masks, scaled_mask_size, method=tf.image.ResizeMethod.BILINEAR) offset_int = tf.cast(offset, tf.int32) masks = scaled_masks[:, offset_int[0]:offset_int[0] + rescaled_image_shape[0], offset_int[1]:offset_int[1] + rescaled_image_shape[1], ] masks = tf.squeeze(masks, axis=-1) masks = tf.cast(tf.greater(masks, 0.5), tf.float32) # apply the autoaugment ( image, boxes, masks, ) = autoaugment_utils.distort_image_and_masks_with_autoaugment( image, boxes, masks, self._autoaugment_policy_name) # convert the image back to float32 and denormalize bboxes image = tf.image.convert_image_dtype(image, dtype=tf.float32) boxes = box_utils.denormalize_boxes(boxes, rescaled_image_shape) # filters out empty bboxes boxes, classes, masks, attributes = self._remove_empty_boxes( boxes, classes, masks, attributes) if self._include_mask: if self._use_autoaugment and self._apply_autoaugment_after_resizing: # don't rescale boxes as masks were already resized cropped_boxes = box_utils.normalize_boxes( boxes, rescaled_image_shape) else: # transfer boxes to the original image space cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) cropped_boxes = box_utils.normalize_boxes( cropped_boxes, orig_image_shape) num_masks = tf.shape(input=masks)[0] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), cropped_boxes, box_indices=tf.range(num_masks, dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method="bilinear", ) masks = tf.squeeze(masks, axis=-1) # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # pad the image padded_size = input_utils.compute_padded_size(self._output_size, 2**self._max_level) image = tf.image.pad_to_bounding_box(image, 0, 0, padded_size[0], padded_size[1]) image_height, image_width, _ = image.get_shape().as_list() # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.Anchor( self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width), ) anchor_labeler = anchor.RpnAnchorLabeler( input_anchor, self._rpn_match_threshold, self._rpn_unmatched_threshold, self._rpn_batch_size_per_im, self._rpn_fg_fraction, ) rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { "anchor_boxes": input_anchor.multilevel_boxes, "image_info": image_info, "rpn_score_targets": rpn_score_targets, "rpn_box_targets": rpn_box_targets, } labels["gt_boxes"] = input_utils.pad_to_fixed_size( boxes, self._max_num_instances, -1) labels["gt_classes"] = input_utils.pad_to_fixed_size( classes, self._max_num_instances, -1) if self._include_mask: labels["gt_masks"] = input_utils.pad_to_fixed_size( masks, self._max_num_instances, -1) if self._num_attributes: labels["gt_attributes"] = input_utils.pad_to_fixed_size( attributes, self._max_num_instances, -1) return image, labels
def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) # Gets original image and its size. image = data['image'] # NOTE: The autoaugment method works best when used alongside the standard # horizontal flipping of images along with size jittering and normalization. if self._use_autoaugment: try: from utils import autoaugment_utils # pylint: disable=g-import-not-at-top except ImportError as e: logging.exception('Autoaugment is not supported in TF 2.x.') raise e image, boxes = autoaugment_utils.distort_image_with_autoaugment( image, boxes, self._autoaugment_policy_name) image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, (image_height, image_width), offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, } return image, labels
def _parse_predict_data(self, data): """Parses data for prediction. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: A dictionary of {'images': image, 'labels': labels} where images: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. source_ids: Source image id. Default value -1 if the source id is empty in the groundtruth annotation. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. """ # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Compute Anchor boxes. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) labels = { 'source_id': dataloader_utils.process_source_id(data['source_id']), 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, } if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape) groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': boxes, 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) labels['groundtruths'] = groundtruths return { 'images': image, 'labels': labels, }
def _parse_train_data(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. rpn_score_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. rpn_box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. gt_boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. gt_classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. gt_masks: groundtrugh masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. """ classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] if self._include_mask: masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: if self._include_mask: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) else: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Transfer boxes to the original image space and do normalization. cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape) num_masks = tf.shape(masks)[0] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), cropped_boxes, box_indices=tf.range(num_masks, dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear') masks = tf.squeeze(masks, axis=-1) # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.RpnAnchorLabeler(input_anchor, self._rpn_match_threshold, self._rpn_unmatched_threshold, self._rpn_batch_size_per_im, self._rpn_fg_fraction) rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, 'rpn_score_targets': rpn_score_targets, 'rpn_box_targets': rpn_box_targets, } labels['gt_boxes'] = input_utils.clip_or_pad_to_fixed_size( boxes, self._max_num_instances, -1) labels['gt_classes'] = input_utils.clip_or_pad_to_fixed_size( classes, self._max_num_instances, -1) if self._include_mask: labels['gt_masks'] = input_utils.clip_or_pad_to_fixed_size( masks, self._max_num_instances, -1) return image, labels
def _build_outputs(self, images, labels, mode): is_training = (mode == mode_keys.TRAIN) if 'anchor_boxes' in labels: anchor_boxes = labels['anchor_boxes'] else: anchor_boxes = anchor.Anchor( self._params.architecture.min_level, self._params.architecture.max_level, self._params.anchor.num_scales, self._params.anchor.aspect_ratios, self._params.anchor.anchor_size, images.get_shape().as_list()[1:3]).multilevel_boxes batch_size = tf.shape(images)[0] for level in anchor_boxes: anchor_boxes[level] = tf.tile( tf.expand_dims(anchor_boxes[level], 0), [batch_size, 1, 1]) backbone_features = self._backbone_fn(images, is_training=is_training) fpn_features = self._fpn_fn(backbone_features, is_training=is_training) cls_outputs, box_outputs = self._retinanet_head_fn( fpn_features, is_training=is_training) # Shapemask mask prediction. if is_training: boxes = labels['mask_boxes'] outer_boxes = labels['mask_outer_boxes'] classes = labels['mask_classes'] else: detection_results = self._generate_detections_fn( box_outputs, cls_outputs, anchor_boxes, labels['image_info'][:, 1:2, :]) boxes = detection_results['detection_boxes'] scores = detection_results['detection_scores'] classes = detection_results['detection_classes'] valid_detections = detection_results['num_detections'] # Use list as input to avoide segmentation fault on TPU. image_size = images.get_shape().as_list()[1:3] outer_boxes = box_utils.compute_outer_boxes( tf.reshape(boxes, [-1, 4]), image_size, scale=self._outer_box_scale) outer_boxes = tf.reshape(outer_boxes, tf.shape(boxes)) classes = tf.cast(classes, tf.int32) instance_features, prior_masks = self._shape_prior_head_fn( fpn_features, boxes, outer_boxes, classes, is_training) coarse_mask_logits = self._coarse_mask_fn(instance_features, prior_masks, classes, is_training) fine_mask_logits = self._fine_mask_fn(instance_features, coarse_mask_logits, classes, is_training) model_outputs = { 'cls_outputs': cls_outputs, 'box_outputs': box_outputs, 'fine_mask_logits': fine_mask_logits, 'coarse_mask_logits': coarse_mask_logits, 'prior_masks': prior_masks, 'fpn_features': fpn_features, } if not is_training: model_outputs.update({ 'num_detections': valid_detections, 'detection_boxes': boxes, 'detection_outer_boxes': outer_boxes, 'detection_masks': tf.sigmoid(fine_mask_logits), 'detection_classes': tf.cast(classes, dtype=tf.int32), 'detection_scores': scores, }) return model_outputs
def _parse_train_data(self, data): """Parse data for ShapeMask training.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) masks = tf.gather(masks, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # If not using category, makes all categories with id = 0. if not self._use_category: classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32) # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, self._output_size, aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_scale = image_info[2, :] offset = image_info[3, :] # Resizes and crops boxes and masks. boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, self._output_size, offset) masks = input_utils.resize_and_crop_masks( tf.expand_dims(masks, axis=-1), image_scale, self._output_size, offset) masks = tf.squeeze(masks, axis=-1) # Filters out ground truth boxes that are all zeros. indices = input_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) masks = tf.gather(masks, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, self._output_size) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # Sample groundtruth masks/boxes/classes for mask branch. num_masks = tf.shape(masks)[0] mask_shape = tf.shape(masks)[1:3] # Pad sampled boxes/masks/classes to a constant batch size. padded_boxes = input_utils.pad_to_fixed_size(boxes, self._num_sampled_masks) padded_classes = input_utils.pad_to_fixed_size(classes, self._num_sampled_masks) padded_masks = input_utils.pad_to_fixed_size(masks, self._num_sampled_masks) # Randomly sample groundtruth masks for mask branch training. For the image # without groundtruth masks, it will sample the dummy padded tensors. rand_indices = tf.random.uniform([self._num_sampled_masks], minval=0, maxval=tf.maximum(num_masks, 1), dtype=tf.dtypes.int32) sampled_boxes = tf.gather(padded_boxes, rand_indices) sampled_classes = tf.gather(padded_classes, rand_indices) sampled_masks = tf.gather(padded_masks, rand_indices) # Compute mask targets in feature crop. A feature crop fully contains a # sampled box. mask_outer_boxes = box_utils.compute_outer_boxes( sampled_boxes, mask_shape, scale=self._outer_box_scale) norm_mask_outer_boxes = box_utils.normalize_boxes( mask_outer_boxes, mask_shape) # Set sampled_masks shape to [batch_size, height, width, 1]. sampled_masks = tf.expand_dims(sampled_masks, axis=-1) mask_targets = tf.image.crop_and_resize( sampled_masks, norm_mask_outer_boxes, box_ind=tf.range(self._num_sampled_masks), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear', extrapolation_value=0, name='train_mask_targets') mask_targets = tf.where(tf.greater_equal(mask_targets, 0.5), tf.ones_like(mask_targets), tf.zeros_like(mask_targets)) mask_targets = tf.squeeze(mask_targets, axis=-1) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, # For ShapeMask. 'mask_boxes': sampled_boxes, 'mask_outer_boxes': mask_outer_boxes, 'mask_targets': mask_targets, 'mask_classes': sampled_classes, 'mask_is_valid': tf.cast(tf.not_equal(num_masks, 0), tf.int32) } return image, labels
def build_outputs(self, inputs, mode): is_training = mode == mode_keys.TRAIN model_outputs = {} image = inputs['image'] _, image_height, image_width, _ = image.get_shape().as_list() backbone_features = self._backbone_fn(image, is_training) fpn_features = self._fpn_fn(backbone_features, is_training) rpn_score_outputs, rpn_box_outputs = self._rpn_head_fn( fpn_features, is_training) model_outputs.update({ 'rpn_score_outputs': tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), rpn_score_outputs), 'rpn_box_outputs': tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), rpn_box_outputs), }) input_anchor = anchor.Anchor(self._params.anchor.min_level, self._params.anchor.max_level, self._params.anchor.num_scales, self._params.anchor.aspect_ratios, self._params.anchor.anchor_size, (image_height, image_width)) rpn_rois, _ = self._generate_rois_fn(rpn_box_outputs, rpn_score_outputs, input_anchor.multilevel_boxes, inputs['image_info'][:, 1, :], is_training) if is_training: rpn_rois = tf.stop_gradient(rpn_rois) # Sample proposals. rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices = ( self._sample_rois_fn(rpn_rois, inputs['gt_boxes'], inputs['gt_classes'])) # Create bounding box training targets. box_targets = box_utils.encode_boxes( matched_gt_boxes, rpn_rois, weights=[10.0, 10.0, 5.0, 5.0]) # If the target is background, the box target is set to all 0s. box_targets = tf.where( tf.tile( tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1), [1, 1, 4]), tf.zeros_like(box_targets), box_targets) model_outputs.update({ 'class_targets': matched_gt_classes, 'box_targets': box_targets, }) roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, rpn_rois, output_size=7) class_outputs, box_outputs = self._frcnn_head_fn(roi_features, is_training) model_outputs.update({ 'class_outputs': tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), class_outputs), 'box_outputs': tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), box_outputs), }) # Add this output to train to make the checkpoint loadable in predict mode. # If we skip it in train mode, the heads will be out-of-order and checkpoint # loading will fail. boxes, scores, classes, valid_detections = self._generate_detections_fn( box_outputs, class_outputs, rpn_rois, inputs['image_info'][:, 1:2, :]) model_outputs.update({ 'num_detections': valid_detections, 'detection_boxes': boxes, 'detection_classes': classes, 'detection_scores': scores, }) if not self._include_mask: return model_outputs if is_training: rpn_rois, classes, mask_targets = self._sample_masks_fn( rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices, inputs['gt_masks']) mask_targets = tf.stop_gradient(mask_targets) classes = tf.cast(classes, dtype=tf.int32) model_outputs.update({ 'mask_targets': mask_targets, 'sampled_class_targets': classes, }) else: rpn_rois = boxes classes = tf.cast(classes, dtype=tf.int32) mask_roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, rpn_rois, output_size=14) mask_outputs = self._mrcnn_head_fn(mask_roi_features, classes, is_training) if is_training: model_outputs.update({ 'mask_outputs': tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), mask_outputs), }) else: model_outputs.update({ 'detection_masks': tf.nn.sigmoid(mask_outputs) }) return model_outputs
def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, (image_height, image_width), offset) # Filters out ground truth boxes that are all zeros. indices = input_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, } return image, labels
def parse_train_data(self, data): """Parse data for ShapeMask training.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) masks = tf.gather(masks, indices) # If not using category, makes all categories with id = 0. if not self._use_category: classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32) image = self.get_normalized_image(data) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) # Converts boxes from normalized coordinates to pixel coordinates. image_shape = tf.shape(image)[0:2] boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, self._output_size, aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) self._train_image_scale = image_info[2, :] self._train_offset = image_info[3, :] # Resizes and crops boxes and masks. boxes = input_utils.resize_and_crop_boxes(boxes, self._train_image_scale, image_info[1, :], self._train_offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) masks = tf.gather(masks, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, self._output_size) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # Sample groundtruth masks/boxes/classes for mask branch. num_masks = tf.shape(masks)[0] mask_shape = tf.shape(masks)[1:3] # Pad sampled boxes/masks/classes to a constant batch size. padded_boxes = input_utils.pad_to_fixed_size(boxes, self._num_sampled_masks) padded_classes = input_utils.pad_to_fixed_size(classes, self._num_sampled_masks) padded_masks = input_utils.pad_to_fixed_size(masks, self._num_sampled_masks) # Randomly sample groundtruth masks for mask branch training. For the image # without groundtruth masks, it will sample the dummy padded tensors. rand_indices = tf.random.shuffle( tf.range(tf.maximum(num_masks, self._num_sampled_masks))) rand_indices = tf.mod(rand_indices, tf.maximum(num_masks, 1)) rand_indices = rand_indices[0:self._num_sampled_masks] rand_indices = tf.reshape(rand_indices, [self._num_sampled_masks]) sampled_boxes = tf.gather(padded_boxes, rand_indices) sampled_classes = tf.gather(padded_classes, rand_indices) sampled_masks = tf.gather(padded_masks, rand_indices) # Jitter the sampled boxes to mimic the noisy detections. sampled_boxes = box_utils.jitter_boxes( sampled_boxes, noise_scale=self._box_jitter_scale) sampled_boxes = box_utils.clip_boxes(sampled_boxes, self._output_size) # Compute mask targets in feature crop. A feature crop fully contains a # sampled box. mask_outer_boxes = box_utils.compute_outer_boxes( sampled_boxes, tf.shape(image)[0:2], scale=self._outer_box_scale) mask_outer_boxes = box_utils.clip_boxes(mask_outer_boxes, self._output_size) # Compensate the offset of mask_outer_boxes to map it back to original image # scale. mask_outer_boxes_ori = mask_outer_boxes mask_outer_boxes_ori += tf.tile( tf.expand_dims(self._train_offset, axis=0), [1, 2]) mask_outer_boxes_ori /= tf.tile( tf.expand_dims(self._train_image_scale, axis=0), [1, 2]) norm_mask_outer_boxes_ori = box_utils.normalize_boxes( mask_outer_boxes_ori, mask_shape) # Set sampled_masks shape to [batch_size, height, width, 1]. sampled_masks = tf.cast(tf.expand_dims(sampled_masks, axis=-1), tf.float32) mask_targets = tf.image.crop_and_resize( sampled_masks, norm_mask_outer_boxes_ori, box_ind=tf.range(self._num_sampled_masks), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear', extrapolation_value=0, name='train_mask_targets') mask_targets = tf.where(tf.greater_equal(mask_targets, 0.5), tf.ones_like(mask_targets), tf.zeros_like(mask_targets)) mask_targets = tf.squeeze(mask_targets, axis=-1) if self._up_sample_factor > 1: fine_mask_targets = tf.image.crop_and_resize( sampled_masks, norm_mask_outer_boxes_ori, box_ind=tf.range(self._num_sampled_masks), crop_size=[ self._mask_crop_size * self._up_sample_factor, self._mask_crop_size * self._up_sample_factor ], method='bilinear', extrapolation_value=0, name='train_mask_targets') fine_mask_targets = tf.where( tf.greater_equal(fine_mask_targets, 0.5), tf.ones_like(fine_mask_targets), tf.zeros_like(fine_mask_targets)) fine_mask_targets = tf.squeeze(fine_mask_targets, axis=-1) else: fine_mask_targets = mask_targets # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) valid_image = tf.cast(tf.not_equal(num_masks, 0), tf.int32) if self._mask_train_class == 'all': mask_is_valid = valid_image * tf.ones_like(sampled_classes, tf.int32) else: # Get the intersection of sampled classes with training splits. mask_valid_classes = tf.cast( tf.expand_dims( class_utils.coco_split_class_ids(self._mask_train_class), 1), sampled_classes.dtype) match = tf.reduce_any( tf.equal(tf.expand_dims(sampled_classes, 0), mask_valid_classes), 0) mask_is_valid = valid_image * tf.cast(match, tf.int32) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, # For ShapeMask. 'mask_boxes': sampled_boxes, 'mask_outer_boxes': mask_outer_boxes, 'mask_targets': mask_targets, 'fine_mask_targets': fine_mask_targets, 'mask_classes': sampled_classes, 'mask_is_valid': mask_is_valid, } return image, labels
def parse_predict_data(self, data): """Parse data for ShapeMask training.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] masks = data['groundtruth_instance_masks'] # If not using category, makes all categories with id = 0. if not self._use_category: classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32) image = self.get_normalized_image(data) # Converts boxes from normalized coordinates to pixel coordinates. image_shape = tf.shape(image)[0:2] boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, self._output_size, aug_scale_min=1.0, aug_scale_max=1.0) image_scale = image_info[2, :] offset = image_info[3, :] # Resizes and crops boxes and masks. boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) masks = input_utils.resize_and_crop_masks( tf.expand_dims(masks, axis=-1), image_scale, self._output_size, offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, self._output_size) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, } if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape), 'classes': data['groundtruth_classes'], # 'masks': tf.squeeze(masks, axis=-1), 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) # Computes training labels. (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # Packs labels for model_fn outputs. labels.update({ 'cls_targets': cls_targets, 'box_targets': box_targets, 'num_positives': num_positives, 'groundtruths': groundtruths, }) return { 'images': image, 'labels': labels, }
def _build_outputs(self, images, labels, mode): is_training = mode == mode_keys.TRAIN model_outputs = {} if 'anchor_boxes' in labels: anchor_boxes = labels['anchor_boxes'] else: anchor_boxes = anchor.Anchor( self._params.architecture.min_level, self._params.architecture.max_level, self._params.anchor.num_scales, self._params.anchor.aspect_ratios, self._params.anchor.anchor_size, images.get_shape().as_list()[1:3]).multilevel_boxes batch_size = tf.shape(images)[0] for level in anchor_boxes: anchor_boxes[level] = tf.tile( tf.expand_dims(anchor_boxes[level], 0), [batch_size, 1, 1]) backbone_features = self._backbone_fn(images, is_training) fpn_features = self._fpn_fn(backbone_features, is_training) rpn_score_outputs, rpn_box_outputs = self._rpn_head_fn( fpn_features, is_training) model_outputs.update({ 'rpn_score_outputs': rpn_score_outputs, 'rpn_box_outputs': rpn_box_outputs, }) rpn_rois, _ = self._generate_rois_fn(rpn_box_outputs, rpn_score_outputs, anchor_boxes, labels['image_info'][:, 1, :], is_training) if is_training: rpn_rois = tf.stop_gradient(rpn_rois) # Sample proposals. rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices = ( self._sample_rois_fn(rpn_rois, labels['gt_boxes'], labels['gt_classes'])) self.add_scalar_summary( 'fg_bg_ratio_{}'.format(0), tf.reduce_sum( tf.cast(tf.greater(matched_gt_classes, 0), tf.float32)) / tf.reduce_sum( tf.cast(tf.greater_equal(matched_gt_classes, 0), tf.float32))) # Create bounding box training targets. box_targets = box_utils.encode_boxes( matched_gt_boxes, rpn_rois, weights=[10.0, 10.0, 5.0, 5.0]) # If the target is background, the box target is set to all 0s. box_targets = tf.where( tf.tile( tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1), [1, 1, 4]), tf.zeros_like(box_targets), box_targets) model_outputs.update({ 'class_targets': matched_gt_classes, 'box_targets': box_targets, }) _, num_rois_before_cat, _ = rpn_rois.get_shape().as_list() if is_training and self._feat_distill: tf.logging.info(f'rois before concat distill boxes: {rpn_rois}') rpn_rois = tf.concat([rpn_rois, labels['roi_boxes']], axis=1) # [batch_size, num_rois+max_distill_rois, 4] tf.logging.info(f'rois after concat distill boxes: {rpn_rois}') roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, rpn_rois, output_size=7) if is_training and self._feat_distill: tf.logging.info(f'rois before split: {rpn_rois}') rpn_rois, _ = tf.split( rpn_rois, [num_rois_before_cat, self._max_distill_rois], axis=1) tf.logging.info(f'rois after split: {rpn_rois}') (class_outputs, box_outputs, distill_feat_outputs, distill_class_outputs) = self._frcnn_head_fn(roi_features, is_training) model_outputs.update({ 'class_outputs': class_outputs, 'box_outputs': box_outputs, }) if is_training and self._feat_distill: model_outputs.update( {'distill_feat_outputs': distill_feat_outputs}) if not is_training: detection_results = self._generate_detections_fn( box_outputs, class_outputs, rpn_rois, labels['image_info'][:, 1:2, :], bbox_per_class=not self._params.frcnn_head. class_agnostic_bbox_pred, distill_class_outputs=distill_class_outputs, ) model_outputs.update(detection_results) if not self._include_mask: return model_outputs if is_training: rpn_rois, classes, mask_targets = self._sample_masks_fn( rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices, labels['gt_masks']) mask_targets = tf.stop_gradient(mask_targets) classes = tf.cast(classes, dtype=tf.int32) model_outputs.update({ 'mask_targets': mask_targets, 'sampled_class_targets': classes, }) else: rpn_rois = detection_results['detection_boxes'] classes = tf.cast(detection_results['detection_classes'], dtype=tf.int32) mask_roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, rpn_rois, output_size=14) mask_outputs = self._mrcnn_head_fn(mask_roi_features, classes, is_training) if is_training: model_outputs.update({ 'mask_outputs': mask_outputs, }) else: model_outputs.update( {'detection_masks': tf.nn.sigmoid(mask_outputs)}) return model_outputs
def build_outputs(self, features, labels, mode): is_training = mode == mode_keys.TRAIN model_outputs = {} if 'anchor_boxes' in labels: anchor_boxes = labels['anchor_boxes'] else: anchor_boxes = anchor.Anchor( self._anchor_params.min_level, self._anchor_params.max_level, self._anchor_params.num_scales, self._anchor_params.aspect_ratios, self._anchor_params.anchor_size, features.get_shape().as_list()[1:3]).multilevel_boxes backbone_features = self._backbone_fn(features, is_training) fpn_features = self._fpn_fn(backbone_features, is_training) rpn_score_outputs, rpn_box_outputs = self._rpn_head_fn( fpn_features, is_training) model_outputs.update({ 'rpn_score_outputs': rpn_score_outputs, 'rpn_box_outputs': rpn_box_outputs, }) rpn_rois, _ = self._generate_rois_fn(rpn_box_outputs, rpn_score_outputs, anchor_boxes, labels['image_info'][:, 1, :], is_training) if is_training: rpn_rois = tf.stop_gradient(rpn_rois) # Sample proposals. rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices = ( self._sample_rois_fn(rpn_rois, labels['gt_boxes'], labels['gt_classes'])) # Create bounding box training targets. box_targets = box_utils.encode_boxes( matched_gt_boxes, rpn_rois, weights=[10.0, 10.0, 5.0, 5.0]) # If the target is background, the box target is set to all 0s. box_targets = tf.where( tf.tile( tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1), [1, 1, 4]), tf.zeros_like(box_targets), box_targets) model_outputs.update({ 'class_targets': matched_gt_classes, 'box_targets': box_targets, }) roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, rpn_rois, output_size=7) class_outputs, box_outputs = self._frcnn_head_fn( roi_features, is_training) model_outputs.update({ 'class_outputs': class_outputs, 'box_outputs': box_outputs, }) if not is_training: detection_results = self._generate_detections_fn( box_outputs, class_outputs, rpn_rois, labels['image_info'][:, 1:2, :]) model_outputs.update(detection_results) if not self._include_mask: self._log_model_statistics(features) return model_outputs if is_training: rpn_rois, classes, mask_targets = self._sample_masks_fn( rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices, labels['gt_masks']) mask_targets = tf.stop_gradient(mask_targets) classes = tf.cast(classes, dtype=tf.int32) model_outputs.update({ 'mask_targets': mask_targets, 'sampled_class_targets': classes, }) else: rpn_rois = detection_results['detection_boxes'] classes = tf.cast(detection_results['detection_classes'], dtype=tf.int32) mask_roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, rpn_rois, output_size=14) mask_outputs = self._mrcnn_head_fn(mask_roi_features, classes, is_training) if is_training: model_outputs.update({ 'mask_outputs': mask_outputs, }) else: model_outputs.update( {'detection_masks': tf.nn.sigmoid(mask_outputs)}) self._log_model_statistics(features) return model_outputs
def _build_outputs(self, images, labels, mode): is_training = mode == mode_keys.TRAIN model_outputs = {} if 'anchor_boxes' in labels: anchor_boxes = labels['anchor_boxes'] else: anchor_boxes = anchor.Anchor( self._params.architecture.min_level, self._params.architecture.max_level, self._params.anchor.num_scales, self._params.anchor.aspect_ratios, self._params.anchor.anchor_size, images.get_shape().as_list()[1:3]).multilevel_boxes batch_size = tf.shape(images)[0] for level in anchor_boxes: anchor_boxes[level] = tf.tile( tf.expand_dims(anchor_boxes[level], 0), [batch_size, 1, 1]) backbone_features = self._backbone_fn(images, is_training) fpn_features = self._fpn_fn(backbone_features, is_training) rpn_score_outputs, rpn_box_outputs = self._rpn_head_fn( fpn_features, is_training) model_outputs.update({ 'rpn_score_outputs': rpn_score_outputs, 'rpn_box_outputs': rpn_box_outputs, }) # Run the RPN layer to get bbox coordinates for first frcnn layer. current_rois, _ = self._generate_rois_fn(rpn_box_outputs, rpn_score_outputs, anchor_boxes, labels['image_info'][:, 1, :], is_training) cascade_ious = [-1] if self._cascade_iou_thresholds is not None: cascade_ious = cascade_ious + self._cascade_iou_thresholds next_rois = current_rois # Stores the class predictions for each RCNN head. all_class_outputs = [] for cascade_num, iou_threshold in enumerate(cascade_ious): # In cascade RCNN we want the higher layers to have different regression # weights as the predicted deltas become smaller and smaller. regression_weights = self._cascade_layer_to_weights[cascade_num] current_rois = next_rois (class_outputs, box_outputs, model_outputs, matched_gt_boxes, matched_gt_classes, matched_gt_indices, current_rois) = self._run_frcnn_head(fpn_features, current_rois, labels, is_training, model_outputs, cascade_num, iou_threshold, regression_weights) all_class_outputs.append(class_outputs) # Generate the next rois if we are running another cascade. # Since bboxes are predicted for every class # (if `class_agnostic_bbox_pred` is false) this takes the best class # bbox and converts it to the correct format to be used for roi # operations. if is_training: correct_class = matched_gt_classes else: correct_class = tf.arg_max(class_outputs, dimension=-1) next_rois = self._box_outputs_to_rois( box_outputs, current_rois, correct_class, labels['image_info'][:, 1:2, :], regression_weights) if not is_training: tf.logging.info('(self._class_agnostic_bbox_pred): {}'.format( self._class_agnostic_bbox_pred)) if self._cascade_class_ensemble: class_outputs = tf.add_n(all_class_outputs) / len( all_class_outputs) # Post processing/NMS is done here for final boxes. Note NMS is done # before to generate proposals of the output of the RPN head. # The background class is also removed here. detection_results = self._generate_detections_fn( box_outputs, class_outputs, current_rois, labels['image_info'][:, 1:2, :], regression_weights, bbox_per_class=(not self._class_agnostic_bbox_pred)) model_outputs.update(detection_results) if not self._include_mask: return model_outputs if is_training: current_rois, classes, mask_targets = self._sample_masks_fn( current_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices, labels['gt_masks']) mask_targets = tf.stop_gradient(mask_targets) classes = tf.cast(classes, dtype=tf.int32) model_outputs.update({ 'mask_targets': mask_targets, 'sampled_class_targets': classes, }) else: current_rois = detection_results['detection_boxes'] classes = tf.cast(detection_results['detection_classes'], dtype=tf.int32) mask_roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, current_rois, output_size=14) mask_outputs = self._mrcnn_head_fn(mask_roi_features, classes, is_training) if is_training: model_outputs.update({ 'mask_outputs': mask_outputs, }) else: model_outputs.update( {'detection_masks': tf.nn.sigmoid(mask_outputs)}) return model_outputs
def _parse_eval_data(self, data): """Parses data for evaluation. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. groundtruths: source_id: Groundtruth source id. height: Original image height. width: Original image width. boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. areas: Box area or mask area depend on whether mask is present. is_crowds: Whether the ground truth label is a crowd label. num_groundtruths: Number of ground truths in the image. """ # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # Assigns anchor targets. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Sets up groundtruth data for evaluation. groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_groundtruths': tf.shape(data['groundtruth_classes']), 'boxes': box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape), 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } # TODO(b/143766089): Add ground truth masks for segmentation metrics. groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) # Packs labels for model_fn outputs. labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, 'groundtruths': groundtruths, } return image, labels
def _parse_eval_data(self, data): """Parses data for training and evaluation.""" groundtruths = {} classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] # Gets original image and its size. image = data['image'] image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Sets up groundtruth data for evaluation. groundtruths = { 'source_id': data['source_id'], 'num_groundtrtuhs': tf.shape(data['groundtruth_classes']), 'image_info': image_info, 'boxes': box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape), 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = process_source_id( groundtruths['source_id']) groundtruths = pad_groundtruths_to_fixed_size(groundtruths, self._max_num_instances) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, 'groundtruths': groundtruths, } return image, labels
def build_predictions(features, params, output_image_info, output_normalized_coordinates, cast_num_detections_to_float, cast_detection_classes_to_float=False): """Builds the model graph for serving. Args: features: features to be passed to the serving model graph params: hyperparameters to be passed to the serving model graph output_image_info: bool, whether output the image_info node. output_normalized_coordinates: bool, whether box outputs are in the normalized coordinates. cast_num_detections_to_float: bool, whether to cast the number of detections to float type. cast_detection_classes_to_float: bool, whether or not cast the detection classes to float type. Returns: predictions: model outputs for serving. model_outputs: a dict of model output tensors. """ images = features['images'] batch_size, height, width, _ = images.get_shape().as_list() input_anchor = anchor.Anchor(params.architecture.min_level, params.architecture.max_level, params.anchor.num_scales, params.anchor.aspect_ratios, params.anchor.anchor_size, (height, width)) multilevel_boxes = {} for k, v in six.iteritems(input_anchor.multilevel_boxes): multilevel_boxes[k] = tf.tile(tf.expand_dims(v, 0), [batch_size, 1, 1]) model_fn = factory.model_generator(params) model_outputs = model_fn.build_outputs(features['images'], labels={ 'anchor_boxes': multilevel_boxes, 'image_info': features['image_info'], }, mode=mode_keys.PREDICT) # Return flattened raw outputs. if not params.postprocess.apply_nms: predictions = { 'raw_boxes': tf.identity(model_outputs['raw_boxes'], 'RawBoxes'), 'raw_scores': tf.identity(model_outputs['raw_scores'], 'RawScores'), } return predictions, model_outputs if cast_num_detections_to_float: model_outputs['num_detections'] = tf.cast( model_outputs['num_detections'], dtype=tf.float32) if cast_detection_classes_to_float: model_outputs['detection_classes'] = tf.cast( model_outputs['detection_classes'], dtype=tf.float32) if output_image_info: model_outputs.update({ 'image_info': features['image_info'], }) if output_normalized_coordinates: detection_boxes = ( model_outputs['detection_boxes'] / tf.tile(features['image_info'][:, 2:3, :], [1, 1, 2])) model_outputs['detection_boxes'] = box_utils.normalize_boxes( detection_boxes, features['image_info'][:, 0:1, :]) predictions = { 'num_detections': tf.identity(model_outputs['num_detections'], 'NumDetections'), 'detection_boxes': tf.identity(model_outputs['detection_boxes'], 'DetectionBoxes'), 'detection_classes': tf.identity(model_outputs['detection_classes'], 'DetectionClasses'), 'detection_scores': tf.identity(model_outputs['detection_scores'], 'DetectionScores'), } if 'detection_masks' in model_outputs: predictions.update({ 'detection_masks': tf.identity(model_outputs['detection_masks'], 'DetectionMasks'), }) if 'detection_outer_boxes' in model_outputs: predictions.update({ 'detection_outer_boxes': tf.identity(model_outputs['detection_outer_boxes'], 'DetectionOuterBoxes'), }) if output_image_info: predictions['image_info'] = tf.identity(model_outputs['image_info'], 'ImageInfo') return predictions, model_outputs
def _build_outputs(self, images, labels, mode): is_training = mode == mode_keys.TRAIN model_outputs = {} if "anchor_boxes" in labels: anchor_boxes = labels["anchor_boxes"] else: anchor_boxes = anchor.Anchor( self._params.architecture.min_level, self._params.architecture.max_level, self._params.anchor.num_scales, self._params.anchor.aspect_ratios, self._params.anchor.anchor_size, images.get_shape().as_list()[1:3], ).multilevel_boxes batch_size = tf.shape(input=images)[0] for level in anchor_boxes: anchor_boxes[level] = tf.tile( tf.expand_dims(anchor_boxes[level], 0), [batch_size, 1, 1]) backbone_features = self._backbone_fn(images, is_training) fpn_features = self._fpn_fn(backbone_features, is_training) rpn_score_outputs, rpn_box_outputs = self._rpn_head_fn( fpn_features, is_training) model_outputs.update({ "rpn_score_outputs": rpn_score_outputs, "rpn_box_outputs": rpn_box_outputs, }) rpn_rois, _ = self._generate_rois_fn( rpn_box_outputs, rpn_score_outputs, anchor_boxes, labels["image_info"][:, 1, :], is_training, ) if is_training: rpn_rois = tf.stop_gradient(rpn_rois) # Sample proposals. ( rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices, ) = self._sample_rois_fn(rpn_rois, labels["gt_boxes"], labels["gt_classes"]) # Create bounding box training targets. box_targets = box_utils.encode_boxes( matched_gt_boxes, rpn_rois, weights=[10.0, 10.0, 5.0, 5.0]) # If the target is background, the box target is set to all 0s. box_targets = tf.compat.v1.where( tf.tile( tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1), [1, 1, 4]), tf.zeros_like(box_targets), box_targets, ) model_outputs.update({ "class_targets": matched_gt_classes, "box_targets": box_targets, }) roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, rpn_rois, output_size=7) class_outputs, box_outputs = self._frcnn_head_fn( roi_features, is_training) model_outputs.update({ "class_outputs": class_outputs, "box_outputs": box_outputs, }) if not is_training: detection_results = self._generate_detections_fn( box_outputs, class_outputs, rpn_rois, labels["image_info"][:, 1:2, :]) model_outputs.update(detection_results) if not self._include_mask: return model_outputs if is_training: ( rpn_rois, classes, mask_targets, gather_nd_gt_indices, ) = self._sample_masks_fn( rpn_rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices, labels["gt_masks"], ) mask_targets = tf.stop_gradient(mask_targets) classes = tf.cast(classes, dtype=tf.int32) model_outputs.update({ "mask_targets": mask_targets, "sampled_class_targets": classes, }) else: rpn_rois = detection_results["detection_boxes"] classes = tf.cast(detection_results["detection_classes"], dtype=tf.int32) mask_roi_features = spatial_transform_ops.multilevel_crop_and_resize( fpn_features, rpn_rois, output_size=14) mask_outputs = self._mrcnn_head_fn(mask_roi_features, classes, is_training) if is_training: model_outputs.update({ "mask_outputs": mask_outputs, }) else: model_outputs.update( {"detection_masks": tf.nn.sigmoid(mask_outputs)}) if not self._include_attributes: return model_outputs attribute_outputs = self._attributes_head_fn(mask_roi_features, is_training) if is_training: attribute_targets = tf.gather_nd( labels["gt_attributes"], gather_nd_gt_indices) # [batch, K, num_attributes] model_outputs.update({ "attribute_outputs": attribute_outputs, "attribute_targets": attribute_targets, }) else: model_outputs["detection_attributes"] = tf.nn.sigmoid( attribute_outputs) return model_outputs
def _parse_predict_data(self, data): """Parses data for prediction.""" # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Compute Anchor boxes. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, } # If mode is PREDICT_WITH_GT, returns groundtruths and training targets # in labels. if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape) groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': boxes, 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) labels['groundtruths'] = groundtruths # Computes training objective for evaluation loss. classes = data['groundtruth_classes'] image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes( boxes, image_scale, (image_height, image_width), offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) labels['cls_targets'] = cls_targets labels['box_targets'] = box_targets labels['num_positives'] = num_positives return { 'images': image, 'labels': labels, }
def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(input=classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( pred=tf.greater(tf.size(input=is_crowds), 0), true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf. int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) # Gets original image and its size. image = data['image'] # NOTE: The autoaugment method works best when used alongside the standard # horizontal flipping of images along with size jittering and normalization. if self._use_autoaugment: image, boxes = autoaugment_utils.distort_image_with_autoaugment( image, boxes, self._autoaugment_policy_name) image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, } # return image, labels num_anchors = input_anchor.anchors_per_location mlvl_cls_targets = tf.concat([tf.reshape(cls_targets[lv], [-1, num_anchors]) \ for lv in range(self._min_level, self._max_level+1)], axis=0) mlvl_box_targets = tf.concat([tf.reshape(box_targets[lv], [-1, num_anchors*4]) \ for lv in range(self._min_level, self._max_level + 1)], axis=0) num_positives_expand = tf.ones_like( mlvl_box_targets[..., 0:1]) * num_positives mlvl_cls_targets_wp = tf.concat( [mlvl_cls_targets, tf.cast(num_positives_expand, dtype=tf.int32)], axis=-1) mlvl_box_targets_wp = tf.concat( [mlvl_box_targets, num_positives_expand], axis=-1) return image, (mlvl_cls_targets_wp, mlvl_box_targets_wp)