default=256, help='maxium disparity. Only affect the coarsest cost volume size') parser.add_argument( '--fac', type=float, default=1, help= 'controls the shape of search grid. Only affect the coarse cost volume size' ) args = parser.parse_args() # dataloader if args.dataset == '2015': from dataloader import kitti15list as DA maxw, maxh = [int(args.testres * 1280), int(args.testres * 384)] test_left_img, test_right_img, _ = DA.dataloader(args.datapath) elif args.dataset == '2015val': from dataloader import kitti15list_val as DA maxw, maxh = [int(args.testres * 1280), int(args.testres * 384)] test_left_img, test_right_img, _ = DA.dataloader(args.datapath) elif args.dataset == '2015vallidar': from dataloader import kitti15list_val_lidar as DA maxw, maxh = [int(args.testres * 1280), int(args.testres * 384)] test_left_img, test_right_img, _ = DA.dataloader(args.datapath) elif args.dataset == '2015test': from dataloader import kitti15list as DA maxw, maxh = [int(args.testres * 1280), int(args.testres * 384)] test_left_img, test_right_img, _ = DA.dataloader(args.datapath) elif args.dataset == 'seq': from dataloader import seqlist as DA maxw, maxh = [int(args.testres * 1280), int(args.testres * 384)]
elif args.dataset == '2015vallidar': from dataloader import kitti15list_val_lidar as DA datapath = '/ssd/kitti_scene/training/' elif args.dataset == '2015test': from dataloader import kitti15list as DA datapath = '/ssd/kitti_scene/testing/' elif args.dataset == 'sintel': from dataloader import sintellist_val as DA datapath = '/ssd/rob_flow/training/' elif args.dataset == 'sinteltest': from dataloader import sintellist as DA datapath = '/ssd/rob_flow/test/' elif args.dataset == 'chairs': from dataloader import chairslist as DA datapath = '/ssd/FlyingChairs_release/data/' test_left_img, test_right_img, flow_paths = DA.dataloader(datapath) if args.dataset == 'chairs': with open('FlyingChairs_train_val.txt', 'r') as f: split = [int(i) for i in f.readlines()] test_left_img = [ test_left_img[i] for i, flag in enumerate(split) if flag == 2 ] test_right_img = [ test_right_img[i] for i, flag in enumerate(split) if flag == 2 ] flow_paths = [flow_paths[i] for i, flag in enumerate(split) if flag == 2] for i, gtflow_path in enumerate(flow_paths): num = gtflow_path.split('/')[-1].strip().replace('flow.flo', 'img1.png') if not 'test' in args.dataset and not 'clip' in args.dataset: