コード例 #1
0
def kitti_kitti_validation(img_height, img_width, batch_size, num_workers):
    """A loader that loads images and depth ground truth for
    depth validation from the kitti validation set.
    """

    transforms = [
        tf.CreateScaledImage(True),
        tf.Resize((img_height, img_width), image_types=('color', )),
        tf.ConvertDepth(),
        tf.CreateColoraug(),
        tf.ToTensor(),
        tf.NormalizeZeroMean(),
        tf.AddKeyValue('domain', 'kitti_kitti_val_depth'),
        tf.AddKeyValue('validation_mask', 'validation_mask_kitti_kitti'),
        tf.AddKeyValue('validation_clamp', 'validation_clamp_kitti'),
        tf.AddKeyValue('purposes', ('depth', )),
    ]

    dataset = StandardDataset(dataset='kitti',
                              split='kitti_split',
                              trainvaltest_split='validation',
                              video_mode='mono',
                              stereo_mode='mono',
                              keys_to_load=('color', 'depth'),
                              data_transforms=transforms,
                              video_frames=(0, ),
                              disable_const_items=True)

    loader = DataLoader(dataset,
                        batch_size,
                        False,
                        num_workers=num_workers,
                        pin_memory=True,
                        drop_last=False)

    print(
        f"  - Can use {len(dataset)} images from the kitti (kitti_split) validation set for depth validation",
        flush=True)

    return loader
コード例 #2
0
ファイル: validation.py プロジェクト: VladimirYugay/SGDepth
def kitti_2015_train(resize_height, resize_width, batch_size, num_workers):
    """A loader that loads images and ground truth for segmentation from the
    kitti_2015 train set
    """

    labels = labels_cityscape_seg.getlabels()
    num_classes = len(labels_cityscape_seg.gettrainid2label())

    transforms = [
        tf.CreateScaledImage(True),
        tf.Resize((resize_height, resize_width), image_types=('color', )),
        tf.ConvertSegmentation(),
        tf.CreateColoraug(),
        tf.ToTensor(),
        tf.NormalizeZeroMean(),
        tf.AddKeyValue('domain', 'kitti_2015_val_seg'),
        tf.AddKeyValue('purposes', ('segmentation', )),
        tf.AddKeyValue('num_classes', num_classes)
    ]

    dataset = StandardDataset(
        dataset='kitti_2015',
        trainvaltest_split='train',
        video_mode='mono',
        stereo_mode='mono',
        labels_mode='fromid',
        labels=labels,
        keys_to_load=['color', 'segmentation'],
        data_transforms=transforms,
        disable_const_items=True
    )

    loader = DataLoader(
        dataset, batch_size, False,
        num_workers=num_workers, pin_memory=True, drop_last=False
    )

    print(f"  - Can use {len(dataset)} images from the kitti_2015 train set for segmentation validation", flush=True)

    return loader
コード例 #3
0
                             fraction=1.0),  # values for visualization only
    mytransforms.ConvertDepth(
    ),  # The convert transforms should come after the
    mytransforms.ConvertSegmentation(),  # Scaling/Rotating/Cropping
    mytransforms.ToTensor(),
]

# With the parameters specified above, a StandardDataset can now be created. You can interate through
# it using the PyTorch DataLoader class.
# There are several optional arguments in the my_dataset class that are not featured here for the sake of
# simplicity. Note that, for example, it is possible to include the previous and/or subsequent frames
# in a video sequence using tha parameter video_frames.
my_dataset = StandardDataset(
    dataset,
    split=split,
    trainvaltest_split=trainvaltest_split,
    keys_to_load=keys_to_load,
    data_transforms=data_transforms,
)
my_loader = DataLoader(my_dataset,
                       batch_size=1,
                       shuffle=False,
                       num_workers=0,
                       pin_memory=True,
                       drop_last=True)

# Print the sizes of the first 3 elements to show how the elements are indexed. Each element
# of the dataset is a dictionary with the 3-tuples as keys. The first entry corrsponds to the image
# category. The second is a video frame index which will be always zero or non-video datasets.
# The third entry is a resolution parameter showing if it is a scaled image.
for element, _ in zip(my_loader, range(3)):
コード例 #4
0
ファイル: train.py プロジェクト: ifnspaml/UBNA
def cityscapes_sequence_train(resize_height, resize_width, crop_height,
                              crop_width, batch_size, num_workers):
    """A loader that loads images for adaptation from the cityscapes_sequence training set.
    This loader returns sequences from the left camera, as well as from the right camera.
    """

    transforms_common = [
        tf.RandomHorizontalFlip(),
        tf.CreateScaledImage(),
        tf.Resize((resize_height * 568 // 512, resize_width * 1092 // 1024),
                  image_types=('color', )),
        # crop away the sides and bottom parts of the image
        tf.SidesCrop((resize_height * 320 // 512, resize_width * 1024 // 1024),
                     (resize_height * 32 // 512, resize_width * 33 // 1024)),
        tf.CreateColoraug(new_element=True),
        tf.ColorJitter(brightness=0.2,
                       contrast=0.2,
                       saturation=0.2,
                       hue=0.1,
                       gamma=0.0),
        tf.RemoveOriginals(),
        tf.ToTensor(),
        tf.NormalizeZeroMean(),
        tf.AddKeyValue('domain', 'cityscapes_sequence_adaptation'),
        tf.AddKeyValue('purposes', ('adaptation', )),
    ]

    dataset_name = 'cityscapes_sequence'

    cfg_common = {
        'dataset': dataset_name,
        'trainvaltest_split': 'train',
        'video_mode': 'mono',
        'stereo_mode': 'mono',
    }

    cfg_left = {'keys_to_load': ('color', ), 'keys_to_video': ('color', )}

    cfg_right = {
        'keys_to_load': ('color_right', ),
        'keys_to_video': ('color_right', )
    }

    dataset_left = StandardDataset(data_transforms=transforms_common,
                                   **cfg_left,
                                   **cfg_common)

    dataset_right = StandardDataset(data_transforms=[tf.ExchangeStereo()] +
                                    transforms_common,
                                    **cfg_right,
                                    **cfg_common)

    dataset = ConcatDataset((dataset_left, dataset_right))

    loader = DataLoader(dataset,
                        batch_size,
                        True,
                        num_workers=num_workers,
                        pin_memory=True,
                        drop_last=True)

    print(
        f"  - Can use {len(dataset)} images from the cityscapes_sequence train set for adaptation",
        flush=True)

    return loader
コード例 #5
0
ファイル: train.py プロジェクト: VladimirYugay/SGDepth
def motsynth_seg_train(resize_height, resize_width, crop_height, crop_width,
                       batch_size, num_workers):
    """A loader that loads images and ground truth for segmentation from the
    cityscapes training set.
    """

    labels = labels_motsynth_seg.getlabels()
    num_classes = len(labels_motsynth_seg.gettrainid2label())

    # transforms = [
    #     tf.RandomHorizontalFlip(),
    #     tf.CreateScaledImage(),
    #     tf.Resize((resize_height, resize_width)),
    #     tf.RandomRescale(1.5),
    #     tf.RandomCrop((crop_height, crop_width)),
    #     tf.ConvertSegmentation(),
    #     tf.CreateColoraug(new_element=True),
    #     tf.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1, gamma=0.0),
    #     tf.RemoveOriginals(),
    #     tf.ToTensor(),
    #     tf.NormalizeZeroMean(),
    #     tf.AddKeyValue('domain', 'motsynth_train_seg'),
    #     tf.AddKeyValue('purposes', ('segmentation', 'domain')),
    #     tf.AddKeyValue('num_classes', num_classes)
    # ]

    transforms = [
        tf.CreateScaledImage(),
        tf.Resize((crop_height, crop_width)),
        tf.ConvertSegmentation(),
        tf.CreateColoraug(new_element=True),
        tf.RemoveOriginals(),
        tf.ToTensor(),
        tf.NormalizeZeroMean(),
        tf.AddKeyValue('domain', 'motsynth_train_seg'),
        tf.AddKeyValue('purposes', ('segmentation', 'domain')),
        tf.AddKeyValue('num_classes', num_classes)
    ]

    dataset_name = 'kek'

    dataset = StandardDataset(dataset=dataset_name,
                              trainvaltest_split='train',
                              video_mode='mono',
                              stereo_mode='mono',
                              labels_mode='fromid',
                              disable_const_items=True,
                              labels=labels,
                              keys_to_load=('color', 'segmentation'),
                              data_transforms=transforms,
                              simple_mode=True,
                              video_frames=(0, ),
                              seq_to_load=['000', '045'])
    loader = DataLoader(dataset,
                        batch_size,
                        True,
                        num_workers=num_workers,
                        pin_memory=True,
                        drop_last=True)

    print(
        f"  - Can use {len(dataset)} images from the motsynth_seg train set for segmentation training",
        flush=True)

    return loader
コード例 #6
0
ファイル: train.py プロジェクト: VladimirYugay/SGDepth
def kitti_zhou_train(resize_height, resize_width, crop_height, crop_width,
                     batch_size, num_workers):
    """A loader that loads image sequences for depth training from the
    kitti training set.
    This loader returns sequences from the left camera, as well as from the right camera.
    """

    transforms_common = [
        tf.RandomHorizontalFlip(),
        tf.CreateScaledImage(),
        tf.Resize((resize_height, resize_width),
                  image_types=('color', 'depth', 'camera_intrinsics', 'K')),
        tf.ConvertDepth(),
        tf.CreateColoraug(new_element=True),
        tf.ColorJitter(brightness=0.2,
                       contrast=0.2,
                       saturation=0.2,
                       hue=0.1,
                       gamma=0.0,
                       fraction=0.5),
        tf.RemoveOriginals(),
        tf.ToTensor(),
        tf.NormalizeZeroMean(),
        tf.AddKeyValue('domain', 'kitti_zhou_train_depth'),
        tf.AddKeyValue('purposes', ('depth', 'domain')),
    ]

    dataset_name = 'kitti'

    cfg_common = {
        'dataset': dataset_name,
        'trainvaltest_split': 'train',
        'video_mode': 'video',
        'stereo_mode': 'mono',
        'split': 'zhou_split',
        'video_frames': (0, -1, 1),
        'disable_const_items': False
    }

    cfg_left = {'keys_to_load': ('color', ), 'keys_to_video': ('color', )}

    cfg_right = {
        'keys_to_load': ('color_right', ),
        'keys_to_video': ('color_right', )
    }

    dataset_left = StandardDataset(data_transforms=transforms_common,
                                   **cfg_left,
                                   **cfg_common)

    dataset_right = StandardDataset(data_transforms=[tf.ExchangeStereo()] +
                                    transforms_common,
                                    **cfg_right,
                                    **cfg_common)

    dataset = ConcatDataset((dataset_left, dataset_right))

    loader = DataLoader(dataset,
                        batch_size,
                        True,
                        num_workers=num_workers,
                        pin_memory=True,
                        drop_last=True)

    print(
        f"  - Can use {len(dataset)} images from the kitti (zhou_split) train split for depth training",
        flush=True)

    return loader
コード例 #7
0
def check_scaled_dataset(dataset_name,
                         scaled_dataset_name,
                         trainvaltest_split,
                         keys_to_load,
                         scaled_size,
                         split=None):
    """ Checks whether the images in a dataset generated by the dataset_scaler are identical to the images that are
    generated by loading the original dataset and scaling them afterwards

    :param dataset_name: Name of the unscaled dataset
    :param scaled_dataset_name: Name of the scaled dataset
    :param trainvaltest_split: 'train', 'validation' or 'test'
    :param keys_to_load: keys that are supposed to be loaded, e.g. 'color', 'depth', 'segmentation', ...
    :param scaled_size: Size of the scaled image (h, w)
    :param split: Name of the dataset split, if one exists
    """
    dataset = dataset_name
    data_transforms = [
        mytransforms.CreateScaledImage(),
        mytransforms.Resize(output_size=scaled_size),
        mytransforms.CreateColoraug(),
        mytransforms.ToTensor(),
    ]
    if keys_to_load is not None:
        if any('depth' in key for key in keys_to_load):
            data_transforms.insert(0, mytransforms.ConvertDepth())
        if any('segmentation' in key for key in keys_to_load):
            data_transforms.insert(0, mytransforms.ConvertSegmentation())
    print('\n Loading {} dataset'.format(dataset))
    my_dataset = StandardDataset(dataset,
                                 split=split,
                                 trainvaltest_split=trainvaltest_split,
                                 keys_to_load=keys_to_load,
                                 data_transforms=data_transforms,
                                 output_filenames=True)
    my_loader = DataLoader(my_dataset,
                           batch_size=1,
                           shuffle=False,
                           num_workers=0,
                           pin_memory=True,
                           drop_last=True)
    print_dataset(my_loader)

    dataset_s = scaled_dataset_name
    data_transforms = [
        mytransforms.CreateScaledImage(),
        mytransforms.CreateColoraug(),
        mytransforms.ToTensor(),
    ]
    if keys_to_load is not None:
        if any('depth' in key for key in keys_to_load):
            data_transforms.insert(0, mytransforms.ConvertDepth())
        if any('segmentation' in key for key in keys_to_load):
            data_transforms.insert(0, mytransforms.ConvertSegmentation())
    print('\n Loading {} dataset'.format(dataset_s))
    my_dataset_s = StandardDataset(dataset_s,
                                   split=split,
                                   trainvaltest_split=trainvaltest_split,
                                   keys_to_load=keys_to_load,
                                   data_transforms=data_transforms,
                                   output_filenames=True)
    my_loader_s = DataLoader(my_dataset_s,
                             batch_size=1,
                             shuffle=False,
                             num_workers=0,
                             pin_memory=True,
                             drop_last=True)
    print_dataset(my_loader_s)
    print("Testing dataset_scaler")
    samples = []
    samples_s = []
    iter_my_loader = iter(my_loader)
    iter_my_loader_s = iter(my_loader_s)
    for _ in range(2):
        samples.append(next(iter_my_loader).copy())
        samples_s.append(next(iter_my_loader_s).copy())
    for key in keys_to_load:
        print("Check if {} entries are equal:".format(key))
        print("  Should be False: {}".format(
            torch.equal(samples[1][(key, 0, 0)], samples_s[0][(key, 0, 0)])))
        print("  Should be True: {}".format(
            torch.equal(samples[0][(key, 0, 0)], samples_s[0][(key, 0, 0)])))
        print("  Should be True: {}".format(
            torch.equal(samples[1][(key, 0, 0)], samples_s[1][(key, 0, 0)])))