コード例 #1
0
 def create_dataset(self, mode):
     # set directory for different modes and create respective datasets
     if mode == 'train':
         s_list = os.path.join(self.datapath, 'CM_protocol/cm_train.trn')
         t = 15000
     elif mode == 'dev':
         s_list = os.path.join(self.datapath, 'CM_protocol/cm_develop.ndx')
         t = 10000
     elif mode == 'test':
         s_list = os.path.join(self.datapath,
                               'CM_protocol/cm_evaluation.ndx')
         t = 10000
     else:
         print('Invalid mode! specify one of train, dev, test.')
     f = (self.sr, self.frame_size, self.frame_shift)
     DLoad = Dataloader(file_dir=os.path.join(self.datapath, 'wav'),
                        speaker_list=s_list,
                        f_param=f,
                        thresh=t)
     DLoad.create_dataset()
     return DLoad
コード例 #2
0
parser.add_argument('-samples', type=int, default=100, help="sampling")
parser.add_argument('-n_samples', type=int, default=50, help="train or test images")
parser.add_argument('-d_output', type=int, default=2, help="dimension of model ouput")
parser.add_argument('-batch_size', type=int, default=64, help="dimension of model ouput")
parser.add_argument('-n_filter', type=int, default=3, help="dimension of model ouput")
parser.add_argument('-model', type=str, default="point", help="training model")
parser.add_argument('-testpath', type=str, default="test.tfrecord", help="test path")
parser.add_argument('-tfrecordpath', type=str, default="train.tfrecord", help="dimension of model ouput")
parser.add_argument('-actv', type=str, default="relu", help="dimension of model ouput")
args = parser.parse_args()

dataloader = Dataloader(args)


if __name__ == "__main__":
    dataset = dataloader.create_dataset()
    optimizer = tf.train.AdamOptimizer(args.lr)
    model_path = "{}_l_{}_b_{}_f_{}.h5".format(args.model, args.lr, args.batch_size, args.n_filter)
    log_path = "{}".format(args.model)


    if not os.path.exists(log_path):
        os.mkdir(log_path)

    callbacks = [ModelCheckpoint(filepath=model_path,
                                 save_best_only=True,
                                 monitor='loss',
                                 verbose=2,
                                 save_weights_only=True),
                 TensorBoard(log_dir=log_path)]