コード例 #1
0
    def test_match_global_datamart_id(self):
        query = QueryManager.match_global_datamart_id(datamart_id=0)
        expected = {
            "term": {
                "datamart_id": 0
            }
        }

        self.assertEqual(expected, query)
コード例 #2
0
ファイル: test_query_manager.py プロジェクト: JiFeRe/datamart
    def test_match_match_global_datamart_id(self):
        query = QueryManager.match_global_datamart_id(datamart_id=0)
        expected = {
            "query": {
                "bool": {
                    "must": [{"term": {"datamart_id": 0}}]
                }
            }
        }

        self.assertEqual(json.dumps(expected), query)
コード例 #3
0
class Augment(object):
    def __init__(self,
                 es_index: str,
                 es_host: str = "dsbox02.isi.edu",
                 es_port: int = 9200) -> None:
        """Init method of QuerySystem, set up connection to elastic search.

        Args:
            es_index: elastic search index.
            es_host: es_host.
            es_port: es_port.

        Returns:

        """

        self.qm = QueryManager(es_host=es_host,
                               es_port=es_port,
                               es_index=es_index)
        self.joiners = dict()
        self.profiler = Profiler()

    def query(self,
              col: pd.Series = None,
              minimum_should_match_ratio_for_col: float = None,
              query_string: str = None,
              temporal_coverage_start: str = None,
              temporal_coverage_end: str = None,
              global_datamart_id: int = None,
              variable_datamart_id: int = None,
              key_value_pairs: typing.List[tuple] = None,
              **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by a pandas Dataframe column

        Args:
            col: pandas Dataframe column.
            minimum_should_match_ratio_for_col: An float ranges from 0 to 1
                indicating the ratio of unique value of the column to be matched
            query_string: string to query any field in metadata
            temporal_coverage_start: start of a temporal coverage
            temporal_coverage_end: end of a temporal coverage
            global_datamart_id: match a global metadata id
            variable_datamart_id: match a variable metadata id
            key_value_pairs: match key value pairs

        Returns:
            matching docs of metadata
        """

        queries = list()

        if query_string:
            queries.append(self.qm.match_any(query_string=query_string))

        if temporal_coverage_start or temporal_coverage_end:
            queries.append(
                self.qm.match_temporal_coverage(start=temporal_coverage_start,
                                                end=temporal_coverage_end))

        if global_datamart_id:
            queries.append(
                self.qm.match_global_datamart_id(
                    datamart_id=global_datamart_id))

        if variable_datamart_id:
            queries.append(
                self.qm.match_variable_datamart_id(
                    datamart_id=variable_datamart_id))

        if key_value_pairs:
            queries.append(
                self.qm.match_key_value_pairs(key_value_pairs=key_value_pairs))

        if col is not None:
            queries.append(
                self.qm.match_some_terms_from_variables_array(
                    terms=col.unique().tolist(),
                    minimum_should_match=minimum_should_match_ratio_for_col))

        if not queries:
            return self._query_all()

        return self.qm.search(body=self.qm.form_conjunction_query(queries),
                              **kwargs)

    def _query_by_es_query(self, body: str,
                           **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by an elastic search query

        Args:
            body: query body

        Returns:
            matching docs of metadata
        """
        return self.qm.search(body=body, **kwargs)

    def _query_all(self, **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query all metadata

        Args:

        Returns:
            matching docs of metadata
        """

        return self.qm.search(body=self.qm.match_all(), **kwargs)

    def join(self,
             left_df: pd.DataFrame,
             right_df: pd.DataFrame,
             left_columns: typing.List[typing.List[int]],
             right_columns: typing.List[typing.List[int]],
             left_metadata: dict = None,
             right_metadata: dict = None,
             joiner: str = "default") -> typing.Optional[pd.DataFrame]:
        """Join two dataframes based on different joiner.

          Args:
              left_df: pandas Dataframe
              right_df: pandas Dataframe
              left_metadata: metadata of left dataframe
              right_metadata: metadata of right dataframe
              left_columns: list of integers from left df for join
              right_columns: list of integers from right df for join
              joiner: string of joiner, default to be "default"

          Returns:
               Dataframe
          """

        if joiner not in self.joiners:
            self.joiners[joiner] = JoinerPrepare.prepare_joiner(joiner=joiner)

        if not self.joiners[joiner]:
            warnings.warn("No suitable joiner, return original dataframe")
            return left_df

        if not left_metadata:
            # Left df is the user provided one.
            # We will generate metadata just based on the data itself, profiling and so on
            left_metadata = Utils.generate_metadata_from_dataframe(
                data=left_df)

        left_metadata = Utils.calculate_dsbox_features(data=left_df,
                                                       metadata=left_metadata)
        right_metadata = Utils.calculate_dsbox_features(
            data=right_df, metadata=right_metadata)

        return self.joiners[joiner].join(
            left_df=left_df,
            right_df=right_df,
            left_columns=left_columns,
            right_columns=right_columns,
            left_metadata=left_metadata,
            right_metadata=right_metadata,
        )
コード例 #4
0
class Augment(object):

    def __init__(self, es_index: str, es_host: str = "dsbox02.isi.edu", es_port: int = 9200) -> None:
        """Init method of QuerySystem, set up connection to elastic search.

        Args:
            es_index: elastic search index.
            es_host: es_host.
            es_port: es_port.

        Returns:

        """

        self.qm = QueryManager(es_host=es_host, es_port=es_port, es_index=es_index)

    def query_by_column(self,
                        col: pd.Series,
                        minimum_should_match: int = None,
                        **kwargs
                        ) -> typing.Optional[typing.List[dict]]:
        """Query metadata by a pandas Dataframe column

        Args:
            col: pandas Dataframe column.
            minimum_should_match: An integer ranges from 0 to length of unique value in col.
            Represent the minimum number of terms should match.

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_some_terms_from_array(terms=col.unique().tolist(),
                                                   minimum_should_match=minimum_should_match)
        return self.qm.search(body=body, **kwargs)

    def query_by_named_entities(self,
                                named_entities: list,
                                minimum_should_match: int = None,
                                **kwargs
                                ) -> typing.Optional[typing.List[dict]]:
        """Query metadata by a pandas Dataframe column

        Args:
            named_entities: list of named entities
            minimum_should_match: An integer ranges from 0 to length of named entities list.
            Represent the minimum number of terms should match.

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_some_terms_from_array(terms=named_entities,
                                                   key="variables.named_entity.keyword",
                                                   minimum_should_match=minimum_should_match)
        return self.qm.search(body=body, **kwargs)

    def query_by_temporal_coverage(self, start=None, end=None, **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by a temporal coverage of column

        Args:
            start: dataset should cover date time earlier than the start date.
            end: dataset should cover date time later than the end date.

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_temporal_coverage(start=start, end=end)
        return self.qm.search(body=body, **kwargs)

    def query_by_datamart_id(self, datamart_id: int, **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by datamart id

        Args:
            datamart_id: int

        Returns:
            matching docs of metadata
        """

        global_body = self.qm.match_global_datamart_id(datamart_id=datamart_id)
        variable_body = self.qm.match_variable_datamart_id(datamart_id=datamart_id)
        return self.qm.search(body=global_body, **kwargs) or self.qm.search(body=variable_body, **kwargs)

    def query_by_key_value_pairs(self,
                                 key_value_pairs: typing.List[tuple],
                                 **kwargs
                                 ) -> typing.Optional[typing.List[dict]]:
        """Query metadata by datamart id

        Args:
            key_value_pairs: list of key value tuple

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_key_value_pairs(key_value_pairs=key_value_pairs)
        return self.qm.search(body=body, **kwargs)

    def query_any_field_with_string(self, query_string, **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query any field of matadata with query_string

        Args:
            key_value_pairs: list of key value tuple

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_any(query_string=query_string)
        return self.qm.search(body=body, **kwargs)

    def query_by_es_query(self, body: str, **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by an elastic search query

        Args:
            body: query body

        Returns:
            matching docs of metadata
        """
        return self.qm.search(body=body, **kwargs)

    @staticmethod
    def get_dataset(metadata: dict, variables: list = None, constrains: dict = None) -> typing.Optional[pd.DataFrame]:
        """Get the dataset with materializer.

       Args:
           metadata: metadata dict.
           variables:
           constrains:

       Returns:
            pandas dataframe
       """

        return Utils.materialize(metadata=metadata, variables=variables, constrains=constrains)
コード例 #5
0
class Augment(object):
    DEFAULT_START_DATE = "1900-01-01T00:00:00"

    def __init__(self,
                 es_index: str,
                 es_host: str = "dsbox02.isi.edu",
                 es_port: int = 9200) -> None:
        """Init method of QuerySystem, set up connection to elastic search.

        Args:
            es_index: elastic search index.
            es_host: es_host.
            es_port: es_port.

        Returns:

        """

        self.qm = QueryManager(es_host=es_host,
                               es_port=es_port,
                               es_index=es_index)
        self.joiners = dict()

    def query_by_column(self,
                        col: pd.Series,
                        minimum_should_match: int = None,
                        **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by a pandas Dataframe column

        Args:
            col: pandas Dataframe column.
            minimum_should_match: An integer ranges from 0 to length of unique value in col.
            Represent the minimum number of terms should match.

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_some_terms_from_variables_array(
            terms=col.unique().tolist(),
            minimum_should_match=minimum_should_match)
        return self.qm.search(body=body, **kwargs)

    def query_by_named_entities(
            self,
            named_entities: list,
            minimum_should_match: int = None,
            **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by a pandas Dataframe column

        Args:
            named_entities: list of named entities
            minimum_should_match: An integer ranges from 0 to length of named entities list.
            Represent the minimum number of terms should match.

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_some_terms_from_variables_array(
            terms=named_entities,
            key="variables.named_entity",
            minimum_should_match=minimum_should_match)
        return self.qm.search(body=body, **kwargs)

    def query_by_temporal_coverage(
            self,
            start=None,
            end=None,
            **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by a temporal coverage of column

        Args:
            start: dataset should cover date time earlier than the start date.
            end: dataset should cover date time later than the end date.

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_temporal_coverage(start=start, end=end)
        return self.qm.search(body=body, **kwargs)

    def query_by_datamart_id(self, datamart_id: int,
                             **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by datamart id

        Args:
            datamart_id: int

        Returns:
            matching docs of metadata
        """

        global_body = self.qm.match_global_datamart_id(datamart_id=datamart_id)
        variable_body = self.qm.match_variable_datamart_id(
            datamart_id=datamart_id)
        return self.qm.search(body=global_body, **kwargs) or self.qm.search(
            body=variable_body, **kwargs)

    def query_by_key_value_pairs(
            self, key_value_pairs: typing.List[tuple],
            **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by datamart id

        Args:
            key_value_pairs: list of key value tuple

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_key_value_pairs(key_value_pairs=key_value_pairs)
        return self.qm.search(body=body, **kwargs)

    def query_any_field_with_string(
            self, query_string,
            **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query any field of matadata with query_string

        Args:
            key_value_pairs: list of key value tuple

        Returns:
            matching docs of metadata
        """

        body = self.qm.match_any(query_string=query_string)
        return self.qm.search(body=body, **kwargs)

    def query_by_es_query(self, body: str,
                          **kwargs) -> typing.Optional[typing.List[dict]]:
        """Query metadata by an elastic search query

        Args:
            body: query body

        Returns:
            matching docs of metadata
        """
        return self.qm.search(body=body, **kwargs)

    @staticmethod
    def get_dataset(metadata: dict,
                    variables: list = None,
                    constrains: dict = None) -> typing.Optional[pd.DataFrame]:
        """Get the dataset with materializer.

       Args:
           metadata: metadata dict.
           variables:
           constrains:

       Returns:
            pandas dataframe
       """
        if "date_range" in constrains:
            if not constrains["date_range"].get("start", None):
                constrains["date_range"]["start"] = Augment.DEFAULT_START_DATE
            if not constrains["date_range"].get("end", None):
                constrains["date_range"]["end"] = datetime.now().strftime(
                    '%Y-%m-%dT%H:%M:%S')
        df = Utils.materialize(metadata=metadata, constrains=constrains)
        if variables:
            return df.iloc[:, variables]
        return df

    @staticmethod
    def get_metadata_intersection(*metadata_lst) -> list:
        """Get the intersect metadata list.

       Args:
           metadata_lst: all metadata list returned by multiple queries

       Returns:
            list of intersect metadata
       """

        metadata_dict = dict()
        metadata_sets = []
        for lst in metadata_lst:
            this_set = set()
            for x in lst:
                if x["_source"]["datamart_id"] not in metadata_dict:
                    metadata_dict[x["_source"]["datamart_id"]] = x
                this_set.add(x["_source"]["datamart_id"])
            metadata_sets.append(this_set)
        return [
            metadata_dict[datamart_id]
            for datamart_id in metadata_sets[0].intersection(
                *metadata_sets[1:])
        ]

    def join(self,
             left_df: pd.DataFrame,
             right_df: pd.DataFrame,
             left_columns: typing.List[int],
             right_columns: typing.List[int],
             left_metadata: dict = None,
             right_metadata: dict = None,
             joiner: str = "default") -> typing.Optional[pd.DataFrame]:
        """Join two dataframes based on different joiner.

          Args:
              left_df: pandas Dataframe
              right_df: pandas Dataframe
              left_metadata: metadata of left dataframe
              right_metadata: metadata of right dataframe
              left_columns: list of integers from left df for join
              right_columns: list of integers from right df for join
              joiner: string of joiner, default to be "default"

          Returns:
               Dataframe
          """

        if joiner not in self.joiners:
            self.joiners[joiner] = JoinerPrepare.prepare_joiner(joiner=joiner)

        if not self.joiners[joiner]:
            warnings.warn("No suitable joiner, return original dataframe")
            return left_df

        return self.joiners[joiner].join(
            left_df=left_df,
            right_df=right_df,
            left_columns=left_columns,
            right_columns=right_columns,
            left_metadata=left_metadata,
            right_metadata=right_metadata,
        )