コード例 #1
0
def augment(data, newdata, metadata, task, writer, columns=None):
    """
    Augments original data based on the task.

    :param data: the data to be augmented, as binary file object.
    :param newdata: the path to the CSV file to augment with.
    :param metadata: the metadata of the data to be augmented.
    :param task: the augmentation task.
    :param writer: Writer on which to save the files.
    :param columns: a list of column indices from newdata that will be added to data
      well with data.
    """

    if 'id' not in task:
        raise AugmentationError(
            "Dataset id for the augmentation task not provided")

    # TODO: add support for combining multiple columns before an augmentation
    #   e.g.: [['street number', 'street', 'city']] and [['address']]
    #   currently, Datamart does not support such cases
    #   this means that spatial joins (with GPS) are not supported for now

    # Perform augmentation
    start = time.perf_counter()
    if task['augmentation']['type'] == 'join':
        output_metadata = join(
            data,
            newdata,
            metadata,
            task['metadata'],
            writer,
            task['augmentation']['left_columns'],
            task['augmentation']['right_columns'],
            columns=columns,
            agg_functions=task['augmentation'].get('agg_functions'),
            temporal_resolution=task['augmentation'].get(
                'temporal_resolution'),
        )
    elif task['augmentation']['type'] == 'union':
        output_metadata = union(
            data,
            newdata,
            metadata,
            task['metadata'],
            writer,
            task['augmentation']['left_columns'],
            task['augmentation']['right_columns'],
        )
    else:
        raise AugmentationError("Augmentation task not provided")
    logger.info("Total augmentation: %.4fs", time.perf_counter() - start)

    # Write out the metadata
    writer.set_metadata(uuid.uuid4().hex, output_metadata)
    return writer.finish()
コード例 #2
0
    def test_spatial_temporal(self):
        """Join on both space and time columns"""
        with setup_augmentation('spatiotemporal_aug.csv',
                                'spatiotemporal.csv') as (
                                    orig_data,
                                    aug_data,
                                    orig_meta,
                                    aug_meta,
                                    result,
                                    writer,
                                ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[1, 2], [0]],
                [[1, 2], [0]],
                agg_functions={
                    'color': ['first', 'count'],
                },
            )

            with open(result) as table:
                self.assertCsvEqualNoOrder(
                    table.read(),
                    'date,latitude,longitude,first color,count color',
                    [
                        '2006-06-20T06:00:00,43.237,6.072,green,2',
                        '2006-06-20T06:00:00,43.238,6.072,red,1',
                        '2006-06-20T06:00:00,43.237,6.073,orange,2',
                        '2006-06-20T06:00:00,43.238,6.073,red,6',
                        '2006-06-20T07:00:00,43.237,6.072,orange,1',
                        '2006-06-20T07:00:00,43.238,6.072,,0',
                        '2006-06-20T07:00:00,43.237,6.073,yellow,4',
                        '2006-06-20T07:00:00,43.238,6.073,blue,4',
                        '2006-06-20T08:00:00,43.237,6.072,green,2',
                        '2006-06-20T08:00:00,43.238,6.072,green,2',
                        '2006-06-20T08:00:00,43.237,6.073,red,6',
                        '2006-06-20T08:00:00,43.238,6.073,green,2',
                    ],
                )

        self.assertJson(
            output_metadata,
            {
                'size':
                544,
                'columns': [
                    {
                        'name': 'date',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': ['http://schema.org/DateTime'],
                        'num_distinct_values': 3,
                    },
                    {
                        'name': 'latitude',
                        'structural_type': 'http://schema.org/Float',
                        'semantic_types': ['http://schema.org/latitude'],
                        'unclean_values_ratio': 0.0,
                        'mean': lambda n: round(n, 3) == 43.238,
                        'stddev': lambda n: round(n, 5) == 0.00050,
                        'coverage': check_ranges(43.234, 43.241),
                    },
                    {
                        'name': 'longitude',
                        'structural_type': 'http://schema.org/Float',
                        'semantic_types': ['http://schema.org/longitude'],
                        'unclean_values_ratio': 0.0,
                        'mean': lambda n: round(n, 3) == 6.073,
                        'stddev': lambda n: round(n, 5) == 0.00050,
                        'coverage': check_ranges(6.069, 6.11),
                    },
                    {
                        'name': 'first color',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': ['http://schema.org/Enumeration'],
                    },
                    {
                        'name': 'count color',
                        'structural_type': 'http://schema.org/Integer',
                        'semantic_types': [],
                    },
                ],
                'qualities': [
                    {
                        'qualName': 'augmentation_info',
                        'qualValueType': 'dict',
                        'qualValue': {
                            'new_columns': ['first color', 'count color'],
                            'removed_columns': [],
                            'nb_rows_before': 12,
                            'nb_rows_after': 12,
                            'augmentation_type': 'join',
                        },
                    },
                ],
            },
        )
コード例 #3
0
    def test_temporal_hourly_days_join(self):
        """Join daily data with hourly (= aggregate down to daily)"""
        with setup_augmentation('hourly_aug_days.csv', 'hourly.csv') as (
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                result,
                writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0]],
                [[0]],
            )

            with open(result) as table:
                self.assertCsvEqualNoOrder(
                    table.read(),
                    'orig_date,color,rain',
                    [
                        '2019-06-12,pink,no',
                        '2019-06-13,grey,no',
                    ],
                )

        self.assertJson(
            output_metadata,
            {
                'size':
                62,
                'columns': [
                    {
                        'name': 'orig_date',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': ['http://schema.org/DateTime'],
                        'num_distinct_values': 2,
                    },
                    {
                        'name': 'color',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': [],
                        'num_distinct_values': 2,
                    },
                    {
                        'name':
                        'rain',
                        'structural_type':
                        'http://schema.org/Text',
                        'semantic_types': [
                            'http://schema.org/Boolean',
                            'http://schema.org/Enumeration',
                        ],
                    },
                ],
                'qualities': [
                    {
                        'qualName': 'augmentation_info',
                        'qualValueType': 'dict',
                        'qualValue': {
                            'new_columns': ['rain'],
                            'removed_columns': [],
                            'nb_rows_before': 2,
                            'nb_rows_after': 2,
                            'augmentation_type': 'join',
                        },
                    },
                ],
            },
        )
コード例 #4
0
    def test_temporal_daily_hours_join(self):
        """Join hourly data with daily (= repeat for each hour)"""
        with setup_augmentation('daily_aug_hours.csv', 'daily.csv') as (
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                result,
                writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0]],
                [[0]],
            )

            with open(result) as table:
                self.assertCsvEqualNoOrder(
                    table.read(),
                    'orig_date,n_people,rain',
                    [
                        '2019-04-25T21:00:00Z,3,yes',
                        '2019-04-26T01:00:00Z,5,no',
                        '2019-04-26T05:00:00Z,6,no',
                        '2019-04-26T09:00:00Z,7,no',
                        '2019-04-26T13:00:00Z,6,no',
                        '2019-04-26T17:00:00Z,8,no',
                        '2019-04-26T21:00:00Z,7,no',
                        '2019-04-27T01:00:00Z,0,yes',
                        '2019-04-27T05:00:00Z,1,yes',
                        '2019-04-27T09:00:00Z,0,yes',
                        '2019-04-27T13:00:00Z,3,yes',
                        '2019-04-27T17:00:00Z,0,yes',
                        '2019-04-27T13:00:00Z,0,yes',
                    ],
                )

        self.assertJson(
            output_metadata,
            {
                'size':
                383,
                'columns': [
                    {
                        'name': 'orig_date',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': ['http://schema.org/DateTime'],
                        'num_distinct_values': 12,
                    },
                    {
                        'name': 'n_people',
                        'structural_type': 'http://schema.org/Integer',
                        'semantic_types': [],
                        'unclean_values_ratio': 0.0,
                        'num_distinct_values': 7,
                        'mean': lambda n: round(n, 3) == 3.538,
                        'stddev': lambda n: round(n, 3) == 2.977,
                        'coverage': check_ranges(0, 8),
                    },
                    {
                        'name':
                        'rain',
                        'structural_type':
                        'http://schema.org/Text',
                        'semantic_types': [
                            'http://schema.org/Boolean',
                            'http://schema.org/Enumeration',
                        ],
                    },
                ],
                'qualities': [
                    {
                        'qualName': 'augmentation_info',
                        'qualValueType': 'dict',
                        'qualValue': {
                            'new_columns': ['rain'],
                            'removed_columns': [],
                            'nb_rows_before': 13,
                            'nb_rows_after': 13,
                            'augmentation_type': 'join',
                        },
                    },
                ],
            },
        )
コード例 #5
0
    def test_temporal_daily_join(self):
        """Join between temporal keys (daily, daily)"""
        with setup_augmentation('daily_aug.csv', 'daily.csv') as (
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                result,
                writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0]],
                [[0]],
            )

            with open(result) as table:
                self.assertCsvEqualNoOrder(
                    table.read(),
                    'orig_date,n_people,rain',
                    [
                        '2019-04-28,3,yes',
                        '2019-04-29,5,yes',
                        '2019-04-30,0,yes',
                        '2019-05-01,1,no',
                        '2019-05-02,3,no',
                        '2019-05-03,2,yes',
                    ],
                )

        self.assertJson(
            output_metadata,
            {
                'size':
                131,
                'columns': [
                    {
                        'name': 'orig_date',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': ['http://schema.org/DateTime'],
                        'num_distinct_values': 6,
                    },
                    {
                        'name': 'n_people',
                        'structural_type': 'http://schema.org/Integer',
                        'semantic_types': [],
                        'unclean_values_ratio': 0.0,
                        'num_distinct_values': 5,
                        'mean': lambda n: round(n, 3) == 2.333,
                        'stddev': lambda n: round(n, 3) == 1.599,
                        'coverage': check_ranges(0, 5),
                    },
                    {
                        'name':
                        'rain',
                        'structural_type':
                        'http://schema.org/Text',
                        'semantic_types': [
                            'http://schema.org/Boolean',
                            'http://schema.org/Enumeration',
                        ],
                    },
                ],
                'qualities': [
                    {
                        'qualName': 'augmentation_info',
                        'qualValueType': 'dict',
                        'qualValue': {
                            'new_columns': ['rain'],
                            'removed_columns': [],
                            'nb_rows_before': 6,
                            'nb_rows_after': 6,
                            'augmentation_type': 'join',
                        },
                    },
                ],
            },
        )
コード例 #6
0
    def test_temporal_hourly_join(self):
        """Join between temporal keys (hourly, hourly)"""
        with setup_augmentation('hourly_aug.csv', 'hourly.csv') as (
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                result,
                writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0]],
                [[0]],
            )

            with open(result) as table:
                self.assertCsvEqualNoOrder(
                    table.read(),
                    'orig_date,color,rain',
                    [
                        '2019-06-13T01:00:00,yellow,no',
                        '2019-06-13T02:00:00,yellow,no',
                        '2019-06-13T03:00:00,brown,no',
                        '2019-06-13T04:00:00,brown,yes',
                        '2019-06-13T05:00:00,yellow,no',
                    ],
                )

        self.assertJson(
            output_metadata,
            {
                'size':
                176,
                'columns': [
                    {
                        'name': 'orig_date',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': ['http://schema.org/DateTime'],
                        'num_distinct_values': 5,
                    },
                    {
                        'name': 'color',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': [],
                        'num_distinct_values': 2,
                    },
                    {
                        'name':
                        'rain',
                        'structural_type':
                        'http://schema.org/Text',
                        'semantic_types': [
                            'http://schema.org/Boolean',
                            'http://schema.org/Enumeration',
                        ],
                    },
                ],
                'qualities': [
                    {
                        'qualName': 'augmentation_info',
                        'qualValueType': 'dict',
                        'qualValue': {
                            'new_columns': ['rain'],
                            'removed_columns': [],
                            'nb_rows_before': 5,
                            'nb_rows_after': 5,
                            'augmentation_type': 'join',
                        },
                    },
                ],
            },
        )
コード例 #7
0
    def test_geo_join(self):
        """Join with lat,long keys"""
        with setup_augmentation('geo_aug.csv', 'geo.csv') as (
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                result,
                writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0, 1]],
                [[1, 2]],
            )

            with open(result) as table:
                table_lines = table.read().splitlines(False)
                # Truncate fields to work around rounding errors
                # FIXME: Deal with rounding errors
                table_lines = [
                    ','.join(e[:8] if e[0] < 'a' or e[0] > 'z' else e
                             for e in line.split(',')) for line in table_lines
                ]
                self.assertCsvEqualNoOrder(
                    '\n'.join(table_lines[0:6]),
                    'lat,long,id,letter,id_r,mean height,sum height,max height,min height',
                    [
                        '40.73119,-74.0026,place100,a,' +
                        'place08,41.41971,248.5182,69.64734,5.034845',
                        '40.72887,-73.9993,place101,b,' +
                        'place01,43.43270,608.0579,67.62636,17.53429',
                        '40.73717,-73.9998,place102,c,' +
                        'place06,49.46972,98.93944,50.59427,48.34517',
                        '40.72910,-73.9966,place103,d,' +
                        'place22,53.20234,159.6070,79.72296,32.52235',
                        '40.73019,-74.0042,place104,e,' +
                        'place02,39.79917,238.7950,51.92994,25.11753'
                    ],
                )

            self.assertJson(
                output_metadata,
                {
                    'size':
                    1014,
                    'columns': [
                        {
                            'name': 'lat',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': ['http://schema.org/latitude'],
                            'unclean_values_ratio': 0.0,
                            'mean': lambda n: round(n, 3) == 40.731,
                            'stddev': lambda n: round(n, 4) == 0.0029,
                            'coverage': check_ranges(40.68, 40.78),
                        },
                        {
                            'name': 'long',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': ['http://schema.org/longitude'],
                            'unclean_values_ratio': 0.0,
                            'mean': lambda n: round(n, 3) == -73.999,
                            'stddev': lambda n: round(n, 5) == 0.00375,
                            'coverage': check_ranges(-74.05, -73.95),
                        },
                        {
                            'name': 'id',
                            'structural_type': 'http://schema.org/Text',
                            'semantic_types': [],
                            'num_distinct_values': 10,
                        },
                        {
                            'name': 'letter',
                            'structural_type': 'http://schema.org/Text',
                            'semantic_types': [],
                            'num_distinct_values': 10,
                        },
                        {
                            'name': 'id_r',
                            'structural_type': 'http://schema.org/Text',
                            'semantic_types': [],
                        },
                        {
                            'name': 'mean height',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': [],
                        },
                        {
                            'name': 'sum height',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': [],
                        },
                        {
                            'name': 'max height',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': [],
                        },
                        {
                            'name': 'min height',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': [],
                        },
                    ],
                    'qualities': [
                        {
                            'qualName': 'augmentation_info',
                            'qualValueType': 'dict',
                            'qualValue': {
                                'new_columns': [
                                    'id_r',
                                    'mean height',
                                    'sum height',
                                    'max height',
                                    'min height',
                                ],
                                'removed_columns': [],
                                'nb_rows_before':
                                10,
                                'nb_rows_after':
                                10,
                                'augmentation_type':
                                'join',
                            },
                        },
                    ],
                },
            )
コード例 #8
0
    def test_basic_join(self):
        """Simple join between integer keys"""
        with setup_augmentation('basic_aug.csv', 'basic.csv') as (
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                result,
                writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0]],
                [[2]],
            )

            with open(result) as table:
                self.assertCsvEqualNoOrder(
                    table.read(),
                    'number,desk_faces,name,color,what',
                    [
                        '5,west,james,green,False',
                        '4,south,john,blue,False',
                        '7,west,michael,blue,True',
                        '6,east,robert,blue,False',
                        '11,,christopher,green,True',
                    ],
                )

        self.assertJson(
            output_metadata,
            {
                'size':
                166,
                'columns': [
                    {
                        'name': 'number',
                        'structural_type': 'http://schema.org/Integer',
                        'semantic_types': [],
                        'unclean_values_ratio': 0.0,
                        'num_distinct_values': 5,
                        'mean': 6.6,
                        'stddev': lambda n: round(n, 3) == 2.417,
                        'coverage': check_ranges(4.0, 11.0),
                    },
                    {
                        'name': 'desk_faces',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': [],
                        'missing_values_ratio': 0.2,
                        'num_distinct_values': 3,
                    },
                    {
                        'name': 'name',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': [],
                    },
                    {
                        'name': 'color',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': ['http://schema.org/Enumeration'],
                    },
                    {
                        'name':
                        'what',
                        'structural_type':
                        'http://schema.org/Text',
                        'semantic_types': [
                            'http://schema.org/Boolean',
                            'http://schema.org/Enumeration',
                        ],
                    },
                ],
                'qualities': [
                    {
                        'qualName': 'augmentation_info',
                        'qualValueType': 'dict',
                        'qualValue': {
                            'new_columns': ['name', 'color', 'what'],
                            'removed_columns': [],
                            'nb_rows_before': 5,
                            'nb_rows_after': 5,
                            'augmentation_type': 'join',
                        },
                    },
                ],
            },
        )
コード例 #9
0
    def test_agg_join_specific_functions(self):
        """Join between integer keys, with specified aggregation functions"""
        with setup_augmentation('agg_aug.csv', 'agg.csv') as (
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                result,
                writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0]],
                [[0]],
                agg_functions={
                    'work': 'count',
                    'salary': ['first', 'sum', 'max'],
                },
            )

            with open(result) as table:
                self.assertCsvEqualNoOrder(
                    table.read(),
                    'id,location,count work,first salary,sum salary,max salary',
                    [
                        '30,south korea,2,200.0,300.0,200.0',
                        '40,brazil,1,,,',
                        '70,usa,2,,600.0,600.0',
                        '80,canada,1,200.0,200.0,200.0',
                        '100,france,2,300.0,500.0,300.0',
                    ],
                )

        self.assertJson(
            output_metadata,
            {
                'size':
                197,
                'columns': [
                    {
                        'name': 'id',
                        'structural_type': 'http://schema.org/Integer',
                        'semantic_types': ['http://schema.org/identifier'],
                        'unclean_values_ratio': 0.0,
                        'num_distinct_values': 5,
                        'mean': 64.0,
                        'stddev': lambda n: round(n, 3) == 25.768,
                        'coverage': check_ranges(30, 100),
                    },
                    {
                        'name': 'location',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': [],
                        'num_distinct_values': 5,
                    },
                    {
                        'name': 'count work',
                        'structural_type': 'http://schema.org/Integer',
                        'semantic_types': [],
                    },
                    {
                        'name': 'first salary',
                        'structural_type': 'http://schema.org/Integer',
                        'semantic_types': [],
                    },
                    {
                        'name': 'sum salary',
                        'structural_type': 'http://schema.org/Float',
                        'semantic_types': [],
                    },
                    {
                        'name': 'max salary',
                        'structural_type': 'http://schema.org/Integer',
                        'semantic_types': [],
                    },
                ],
                'qualities': [
                    {
                        'qualName': 'augmentation_info',
                        'qualValue': {
                            'new_columns': [
                                'count work',
                                'first salary',
                                'sum salary',
                                'max salary',
                            ],
                            'removed_columns': [],
                            'nb_rows_before':
                            5,
                            'nb_rows_after':
                            5,
                            'augmentation_type':
                            'join',
                        },
                        'qualValueType': 'dict',
                    },
                ],
            },
        )
コード例 #10
0
    def test_temporal_hourly_join(self):
        with setup_augmentation('hourly_aug.csv', 'hourly.csv') as (
            orig_data, aug_data, orig_meta, aug_meta, result, writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0]],
                [[0]],
            )

            with open(result) as table:
                self.assertCsvEqualNoOrder(
                    table.read(),
                    'orig_date,color,rain',
                    [
                        '2019-06-13T01:00:00,blue,no',
                        '2019-06-13T02:00:00,blue,no',
                        '2019-06-13T03:00:00,green,no',
                        '2019-06-13T04:00:00,green,yes',
                        '2019-06-13T05:00:00,blue,no',
                    ],
                )

        self.assertJson(
            output_metadata,
            {
                'size': 170,
                'columns': [
                    {
                        'name': 'orig_date',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': ['http://schema.org/DateTime'],
                        'num_distinct_values': 5,
                        'mean': 1560394777.6,
                        'stddev': lambda n: round(n, 3) == 5104.874,
                        'coverage': check_ranges(1560387584.0, 1560402048.0),
                        'temporal_resolution': 'hour',
                    },
                    {
                        'name': 'color',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': [],
                        'num_distinct_values': 2,
                    },
                    {
                        'name': 'rain',
                        'structural_type': 'http://schema.org/Text',
                        'semantic_types': [
                            'http://schema.org/Boolean',
                            'http://schema.org/Enumeration',
                        ],
                    },
                ],
                'qualities': [
                    {
                        'qualName': 'augmentation_info',
                        'qualValueType': 'dict',
                        'qualValue': {
                            'new_columns': ['rain'],
                            'removed_columns': [],
                            'nb_rows_before': 5,
                            'nb_rows_after': 5,
                            'augmentation_type': 'join',
                        },
                    },
                ],
            },
        )
コード例 #11
0
    def test_geo_join(self):
        with setup_augmentation('geo_aug.csv', 'geo.csv') as (
            orig_data, aug_data, orig_meta, aug_meta, result, writer,
        ):
            output_metadata = join(
                orig_data,
                aug_data,
                orig_meta,
                aug_meta,
                writer,
                [[0, 1]],
                [[1, 2]],
            )

            with open(result) as table:
                table_lines = table.read().splitlines(False)
                # Truncate fields to work around rounding errors
                # FIXME: Deal with rounding errors
                table_lines = [
                    ','.join(
                        e[:8] if e[0] < 'a' or e[0] > 'z' else e
                        for e in line.split(',')
                    )
                    for line in table_lines
                ]
                self.assertCsvEqualNoOrder(
                    '\n'.join(table_lines[0:6]),
                    'lat,long,id,letter,id_r,mean height,sum height,max height,min height',
                    [
                        '40.73279,-73.9985,place100,a,'
                        + 'place00,50.24088,351.6862,85.77256,27.97864',
                        '40.72970,-73.9978,place101,b,'
                        + 'place01,42.57717,425.7717,67.62636,17.53429',
                        '40.73266,-73.9975,place102,c,'
                        + 'place06,50.03064,250.1532,79.72296,23.72270',
                        '40.73117,-74.0018,place103,d,'
                        + 'place08,49.40183,395.2146,84.19146,5.034845',
                        '40.69427,-73.9898,place104,e,'
                        + 'place59,47.73903,286.4341,93.16298,11.71055',
                    ],
                )

            self.assertJson(
                output_metadata,
                {
                    'size': 998,
                    'columns': [
                        {
                            'name': 'lat',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': ['http://schema.org/latitude'],
                            'unclean_values_ratio': 0.0,
                            'mean': lambda n: round(n, 3) == 40.709,
                            'stddev': lambda n: round(n, 3) == 0.019,
                        },
                        {
                            'name': 'long',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': ['http://schema.org/longitude'],
                            'unclean_values_ratio': 0.0,
                            'mean': lambda n: round(n, 3) == -73.993,
                            'stddev': lambda n: round(n, 5) == 0.00528,
                        },
                        {
                            'name': 'id',
                            'structural_type': 'http://schema.org/Text',
                            'semantic_types': [],
                            'num_distinct_values': 10,
                        },
                        {
                            'name': 'letter',
                            'structural_type': 'http://schema.org/Text',
                            'semantic_types': [],
                            'num_distinct_values': 10,
                        },
                        {
                            'name': 'id_r',
                            'structural_type': 'http://schema.org/Text',
                            'semantic_types': [],
                        },
                        {
                            'name': 'mean height',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': [],
                        },
                        {
                            'name': 'sum height',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': [],
                        },
                        {
                            'name': 'max height',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': [],
                        },
                        {
                            'name': 'min height',
                            'structural_type': 'http://schema.org/Float',
                            'semantic_types': [],
                        },
                    ],
                    'qualities': [
                        {
                            'qualName': 'augmentation_info',
                            'qualValueType': 'dict',
                            'qualValue': {
                                'new_columns': [
                                    'id_r', 'mean height',
                                    'sum height', 'max height', 'min height',
                                ],
                                'removed_columns': [],
                                'nb_rows_before': 10,
                                'nb_rows_after': 10,
                                'augmentation_type': 'join',
                            },
                        },
                    ],
                },
            )