def test_io(): refdm = DataMatrix(length=3) refdm[u'tést'] = 1, 2, u'' refdm.B = u'mathôt', u'b', u'x' refdm.C = u'a,\\b"\'c', 8, u'' testdm = io.readtxt('testcases/data/data.csv') check_dm(refdm, testdm) io.writetxt(testdm, 'tmp.csv') testdm = io.readtxt('tmp.csv') check_dm(refdm, testdm) refdm = io.readtxt('testcases/data/line-ending-cr.csv') check_dm(refdm, testdm) refdm = io.readtxt('testcases/data/line-ending-crlf.csv') check_dm(refdm, testdm) refdm = io.readtxt('testcases/data/data-with-bom.csv') check_dm(refdm, testdm) io.writepickle(testdm, 'tmp.pickle') testdm = io.readpickle('tmp.pickle') check_dm(refdm, testdm) io.writexlsx(testdm, 'tmp.xlsx') with pytest.warns(UserWarning): # Not all rows have column C testdm = io.readxlsx('tmp.xlsx') check_dm(refdm, testdm) io.writexlsx(testdm, 'tmp.xlsx') with pytest.warns(UserWarning): # Not all rows have column C testdm = io.readxlsx('tmp.xlsx') check_dm(refdm, testdm)
def test_io(): refdm = DataMatrix(length=3) refdm[u'tést'] = 1, 2, u'' refdm.B = u'mathôt', u'b', u'x' refdm.C = u'a,\\b"\'c', 8, u'' testdm = io.readtxt('testcases/data/data.csv') check_dm(refdm, testdm) io.writetxt(testdm, 'tmp.csv') testdm = io.readtxt('tmp.csv') check_dm(refdm, testdm) refdm = io.readtxt('testcases/data/line-ending-cr.csv') check_dm(refdm, testdm) refdm = io.readtxt('testcases/data/line-ending-crlf.csv') check_dm(refdm, testdm) io.writepickle(testdm, 'tmp.pickle') testdm = io.readpickle('tmp.pickle') check_dm(refdm, testdm) io.writexlsx(testdm, 'tmp.xlsx') testdm = io.readxlsx('tmp.xlsx') check_dm(refdm, testdm)
def inner(dm, *arglist, **kwdict): print("Running with gaze data") dm = io.readpickle(".cache/gaze-data-%s.pkl" % analysis.exp) print("All experiments: Keeping only correct trials") dm = dm.correct == 1 if analysis.exp == "exp2": print("Exp 2: Keeping only memory trials") dm = dm.trialType == "memory" return fnc(dm)
def realdata(): dm = io.readpickle('data/real-data.pkl') # If the buffered DataMatrix still uses a list-style row index, we convert # it to the new Index object with this hack. if isinstance(dm._rowid, list): from datamatrix._datamatrix._index import Index object.__setattr__(dm, u'_rowid', Index(dm._rowid)) print(len(dm)) return dm
def test_io(): refdm = DataMatrix(length=3) refdm[u'tést'] = 1, 2, u'' refdm.B = u'mathôt', u'b', u'x' refdm.C = u'a,\\b"\'c', 8, u'' testdm = io.readtxt('testcases/data/data.csv') check_dm(refdm, testdm) io.writetxt(testdm, 'tmp.csv') testdm = io.readtxt('tmp.csv') check_dm(refdm, testdm) io.writepickle(testdm, 'tmp.pickle') testdm = io.readpickle('tmp.pickle') check_dm(refdm, testdm) io.writexlsx(testdm, 'tmp.xlsx') testdm = io.readxlsx('tmp.xlsx') check_dm(refdm, testdm)
# <markdowncell> """ ## Data parsing The data is stored in separate DataMatrix objects, one for each participant, where each row corresponds to one video fragment. We merge these objects such that we get a big DataMatrix where each row corresponds to a single participant, and the cells are averaged across video fragments. """ # </markdowncell> # <codecell> dm = DataMatrix(length=NSUB) for row, basename in zip(dm, os.listdir(COR_SRC)): path = os.path.join(COR_SRC, basename) sdm = io.readpickle(path) for colname, col in sdm.columns: if colname not in dm: dm[colname] = type(col) row[colname] = col.mean # </codecell> # <markdowncell> """ For some analyses it's more convient to have the data in long format such that each row corresponds to a single voxel. That's what we do here. We also merge the PRF data into this long format, such that we know the PRF properties for each voxel. """ # </markdowncell>