def test_df_equivalent_after_sql(self): # Parse the CSV df_source = pandas_db.load_df_from_csvfile( StringIO.StringIO(self.csv1), 0, 0) # Store the DF in the DB pandas_db.store_table(df_source, self.table_name) # Load it from the DB df_dst = pandas_db.load_table(self.table_name) # Data frames mut be identical assert df_source.equals(df_dst)
def df_equivalent_after_sql(self): # Parse the CSV df_source = pandas_db.load_df_from_csvfile( StringIO.StringIO(self.csv1), 0, 0) # Store the DF in the DB pandas_db.store_table(df_source, self.table_name) # Load it from the DB df_dst = pandas_db.load_table(self.table_name) # Columns have to have the same values (None and NaN are # different) for x in df_source.columns: np.testing.assert_array_equal( np.array(df_source[x], dtype=unicode), np.array(df_dst[x], dtype=unicode))
def load_upload_from_db(pk): return load_table(create_upload_table_name(pk))