def test_slice_any_checks_for_constant_n_and_prop(): df = tibble(x=range(1, 11)) with pytest.raises(TypeError): slice_head(df, n=f.x) # ok with n() with pytest.raises(TypeError): slice_head(df, prop=f.x) with pytest.raises(TypeError): slice_tail(df, n=f.x) with pytest.raises(TypeError): slice_tail(df, prop=f.x) with pytest.raises(TypeError): slice_min(df, f.x, n=f.x) with pytest.raises(TypeError): slice_min(df, f.x, prop=f.x) with pytest.raises(TypeError): slice_max(df, f.x, n=f.x) with pytest.raises(TypeError): slice_max(df, f.x, prop=f.x) with pytest.raises(TypeError): slice_sample(df, n=f.x) with pytest.raises(TypeError): slice_sample(df, prop=f.x)
def test_min_and_max_ignore_nas(): df = tibble(id=range(1, 5), x=c(2, NA, 1, 2), y=[NA] * 4) out = df >> slice_min(f.x, n=2) assert out.id.tolist() == [3, 1, 4] out = df >> slice_min(f.y, n=2) >> nrow() assert out == 0 out = df >> slice_max(f.x, n=2) assert out.id.tolist() == [1, 4] out = df >> slice_max(f.y, n=2) >> nrow() assert out == 0
def test_min_and_max_reorder_results(): df = tibble(id=range(1, 5), x=c(2, 3, 1, 2)) out = df >> slice_min(f.x, n=2) assert out.id.tolist() == [3, 1, 4] out = df >> slice_min(f.x, n=2, with_ties=False) assert out.id.tolist() == [3, 1] out = df >> slice_max(f.x, n=2) assert out.id.tolist() == [2, 1, 4] out = df >> slice_max(f.x, n=2, with_ties=False) assert out.id.tolist() == [2, 1]
def test_min_and_max_return_ties_by_default(): df = tibble(x=c(1, 1, 1, 2, 2)) out = df >> slice_min(f.x) >> nrow() assert out == 3 out = df >> slice_max(f.x) >> nrow() assert out == 2 out = df >> slice_min(f.x, with_ties=False) >> nrow() assert out == 1 out = df >> slice_max(f.x, with_ties=False) >> nrow() assert out == 1
def test_slice_family_on_rowwise_df(): df = tibble(x=f[1:6]) >> rowwise() out = df >> slice_head(prop=0.1) assert out.shape[0] == 0 out = df >> slice([0, 1, 2]) assert isinstance(out, TibbleRowwise) assert nrow(out) == 5 out = df >> slice_head(n=3) assert isinstance(out, TibbleRowwise) assert nrow(out) == 5 out = df >> slice_tail(n=3) assert isinstance(out, TibbleRowwise) assert nrow(out) == 5 out = df >> slice_min(f.x, n=3) assert isinstance(out, TibbleRowwise) assert nrow(out) == 5 out = df >> slice_max(f.x, n=3) assert isinstance(out, TibbleRowwise) assert nrow(out) == 5 out = df >> slice_sample(n=3) assert isinstance(out, TibbleRowwise) assert nrow(out) == 5
def test_proportion_computed_correctly(): df = tibble(x=range(1, 11)) out = df >> slice_head(prop=0.11) >> nrow() assert out == 1 out = df >> slice_tail(prop=0.11) >> nrow() assert out == 1 out = df >> slice_sample(prop=0.11) >> nrow() assert out == 1 out = df >> slice_min(f.x, prop=0.11) >> nrow() assert out == 1 out = df >> slice_max(f.x, prop=0.11) >> nrow() assert out == 1 out = df >> slice_max(f.x, prop=0.11, with_ties=False) >> nrow() assert out == 1 out = df >> slice_min(f.x, prop=0.11, with_ties=False) >> nrow() assert out == 1
def test_slicex_on_grouped_data(): gf = tibble(g=rep([1, 2], each=3), x=seq(1, 6)) >> group_by(f.g) out = gf >> slice_min(f.x) assert out.equals(tibble(g=[1, 2], x=[1, 4])) out = gf >> slice_max(f.x) assert out.equals(tibble(g=[1, 2], x=[3, 6])) out = gf >> slice_sample() assert dim(out) == (2, 2)
def test_slice_any_checks_for_empty_args_kwargs(): df = tibble(x=range(1, 11)) # python recognize n=5 # with pytest.raises(ValueError): # slice_head(df, 5) # with pytest.raises(ValueError): # slice_tail(df, 5) with pytest.raises(TypeError): df >> slice_min(n=5) with pytest.raises(TypeError): df >> slice_max(n=5)
def test_functions_silently_truncate_results(): df = tibble(x=range(1, 6)) out = df >> slice_head(n=6) >> nrow() assert out == 5 out = df >> slice_tail(n=6) >> nrow() assert out == 5 out = df >> slice_sample(n=6) >> nrow() assert out == 5 out = df >> slice_min(f.x, n=6) >> nrow() assert out == 5 out = df >> slice_max(f.x, n=6) >> nrow() assert out == 5
def test_preserve_prop_not_support(caplog): df = tibble(x=f[:5]) >> group_by(f.x) df >> slice(f.x == 2, _preserve=True) assert "_preserve" in caplog.text with pytest.raises(ValueError): df >> slice_min(f.x, prop=0.5) with pytest.raises(ValueError): df >> slice_max(f.x, prop=0.5) with pytest.raises(ValueError): df >> slice_sample(f.x, prop=0.5)