def build_dataset_test(root, dataset, crop_size, mode='whole', gt=False): data_dir = os.path.join(root, dataset) inform_data_file = os.path.join('./dataset/inform/', dataset + '_inform.pkl') train_data_list = os.path.join(data_dir, dataset + '_train_list.txt') if mode == 'whole': test_data_list = os.path.join(data_dir, dataset + '_test' + '_list.txt') else: test_data_list = os.path.join(data_dir, dataset + '_test_sliding' + '_list.txt') # inform_data_file collect the information of mean, std and weigth_class if not os.path.isfile(inform_data_file): print("%s is not found" % (inform_data_file)) if dataset == "cityscapes": dataCollect = CityscapesTrainInform(data_dir, 19, train_set_file=train_data_list, inform_data_file=inform_data_file) else: raise NotImplementedError( "This repository now supports two datasets: cityscapes and camvid, %s is not included" % dataset) datas = dataCollect.collectDataAndSave() if datas is None: print("error while pickling data. Please check.") exit(-1) else: datas = pickle.load(open(inform_data_file, "rb")) class_dict_df = pd.read_csv(os.path.join('./dataset', dataset, 'class_map.csv')) if dataset == "cityscapes": # for cityscapes, if test on validation set, set none_gt to False # if test on the test set, set none_gt to True if gt: test_data_list = os.path.join(data_dir, dataset + '_val' + '_list.txt') testdataset = CityscapesValDataSet(data_dir, test_data_list, crop_size=crop_size, mean=datas['mean'], std=datas['std'], ignore_label=255) else: test_data_list = os.path.join(data_dir, dataset + '_test' + '_list.txt') testdataset = CityscapesTestDataSet(data_dir, test_data_list, crop_size=crop_size, mean=datas['mean'], std=datas['std'], ignore_label=255) return testdataset, class_dict_df
def build_dataset_train(dataset, input_size, batch_size, train_type, random_scale, random_mirror, num_workers): data_dir = os.path.join('/media/ding/Data/datasets', dataset) train_data_list = os.path.join(data_dir, dataset + '_' + train_type + '_list.txt') val_data_list = os.path.join(data_dir, dataset + '_val' + '_list.txt') inform_data_file = os.path.join('./dataset/inform/', dataset + '_inform.pkl') # inform_data_file collect the information of mean, std and weigth_class if not os.path.isfile(inform_data_file): print("%s is not found" % (inform_data_file)) if dataset == "cityscapes": dataCollect = CityscapesTrainInform( data_dir, 19, train_set_file=train_data_list, inform_data_file=inform_data_file) elif dataset == 'camvid': dataCollect = CamVidTrainInform(data_dir, 11, train_set_file=train_data_list, inform_data_file=inform_data_file) elif dataset == 'paris': dataCollect = ParisTrainInform(data_dir, 3, train_set_file=train_data_list, inform_data_file=inform_data_file) elif dataset == 'road': dataCollect = ParisTrainInform(data_dir, 2, train_set_file=train_data_list, inform_data_file=inform_data_file) else: raise NotImplementedError( "This repository now supports two datasets: cityscapes and camvid, %s is not included" % dataset) datas = dataCollect.collectDataAndSave() if datas is None: print("error while pickling data. Please check.") exit(-1) else: print("find file: ", str(inform_data_file)) datas = pickle.load(open(inform_data_file, "rb")) if dataset == "cityscapes": trainLoader = data.DataLoader(CityscapesDataSet(data_dir, train_data_list, crop_size=input_size, scale=random_scale, mirror=random_mirror, mean=datas['mean']), batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) valLoader = data.DataLoader(CityscapesValDataSet(data_dir, val_data_list, f_scale=1, mean=datas['mean']), batch_size=1, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) return datas, trainLoader, valLoader elif dataset == "camvid": trainLoader = data.DataLoader(CamVidDataSet(data_dir, train_data_list, crop_size=input_size, scale=random_scale, mirror=random_mirror, mean=datas['mean']), batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) valLoader = data.DataLoader(CamVidValDataSet(data_dir, val_data_list, f_scale=1, mean=datas['mean']), batch_size=1, shuffle=True, num_workers=num_workers, pin_memory=True) return datas, trainLoader, valLoader elif dataset == "paris": trainLoader = data.DataLoader(ParisDataSet(data_dir, train_data_list, crop_size=input_size, scale=random_scale, mirror=random_mirror, mean=datas['mean']), batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) valLoader = data.DataLoader(ParisValDataSet(data_dir, val_data_list, f_scale=1, mean=datas['mean']), batch_size=1, shuffle=True, num_workers=num_workers, pin_memory=True) return datas, trainLoader, valLoader elif dataset == "road": trainLoader = data.DataLoader(RoadDataSet(data_dir, train_data_list, crop_size=input_size, scale=random_scale, mirror=random_mirror, mean=datas['mean']), batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) valLoader = data.DataLoader(RoadValDataSet(data_dir, val_data_list, f_scale=1, mean=datas['mean']), batch_size=1, shuffle=True, num_workers=num_workers, pin_memory=True) return datas, trainLoader, valLoader
def build_dataset_sliding_test(dataset, num_workers, none_gt=False): data_dir = os.path.join('/media/ding/Data/datasets', dataset) dataset_list = os.path.join(dataset, '_train_list.txt') if (dataset == 'cityscapes'): test_data_list = os.path.join(data_dir, dataset + '_val' + '_list.txt') else: test_data_list = os.path.join(data_dir, dataset + '_sliding_test' + '_list.txt') inform_data_file = os.path.join('./dataset/inform/', dataset + '_inform.pkl') # inform_data_file collect the information of mean, std and weigth_class if not os.path.isfile(inform_data_file): print("%s is not found" % (inform_data_file)) if dataset == "cityscapes": dataCollect = CityscapesTrainInform( data_dir, 19, train_set_file=dataset_list, inform_data_file=inform_data_file) elif dataset == 'camvid': dataCollect = CamVidTrainInform(data_dir, 11, train_set_file=dataset_list, inform_data_file=inform_data_file) elif dataset == 'paris': dataCollect = ParisTrainInform(data_dir, 3, train_set_file=dataset_list, inform_data_file=inform_data_file) # elif dataset == 'austin': # dataCollect = AustinTrainInform(data_dir, 2, train_set_file=dataset_list, # inform_data_file=inform_data_file) elif dataset == 'road': dataCollect = RoadTrainInform(data_dir, 2, train_set_file=dataset_list, inform_data_file=inform_data_file) else: raise NotImplementedError( "This repository now supports two datasets: cityscapes and camvid, %s is not included" % dataset) datas = dataCollect.collectDataAndSave() if datas is None: print("error while pickling data. Please check.") exit(-1) else: print("find file: ", str(inform_data_file)) datas = pickle.load(open(inform_data_file, "rb")) if dataset == "cityscapes": # for cityscapes, if test on validation set, set none_gt to False # if test on the test set, set none_gt to True if not none_gt: testLoader = data.DataLoader(CityscapesTestDataSet( data_dir, test_data_list, mean=datas['mean']), batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=True) else: test_data_list = os.path.join(data_dir, dataset + '_val' + '_list.txt') testLoader = data.DataLoader(CityscapesValDataSet( data_dir, test_data_list, mean=datas['mean']), batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=True) return datas, testLoader elif dataset == "camvid": testLoader = data.DataLoader(CamVidValDataSet(data_dir, test_data_list, mean=datas['mean'], std=datas['std']), batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=True) return datas, testLoader elif dataset == "paris": testLoader = data.DataLoader(ParisTestDataSet(data_dir, test_data_list, mean=datas['mean']), batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=True) return datas, testLoader # elif dataset == "austin": # # testLoader = data.DataLoader( # AustinTestDataSet(data_dir, test_data_list, mean=datas['mean']), # batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=True) # # return datas, testLoader elif dataset == "road": testLoader = data.DataLoader(RoadTestDataSet(data_dir, test_data_list, mean=datas['mean']), batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=True) return datas, testLoader