コード例 #1
0
ファイル: generators.py プロジェクト: RimonAdel/openpose2
def get_dataset_vgg_with_masks(annot_path, img_dir, batch_size, strict=False, keypoints_num = 22, connections_num = 19):
    def gen(df):
        def f():
            for i in df:
                yield tuple(i)
        return f

    df, size = get_dataflow_vgg(
        annot_path=annot_path,
        img_dir=img_dir,
        strict=strict,
        x_size=368,
        y_size=46,
        include_outputs_masks=True

    )
    df.reset_state()
    ds = tf.data.Dataset.from_generator(
        gen(df), (tf.float32, tf.float32, tf.float32, tf.float32, tf.float32),
        output_shapes=(
            tf.TensorShape([368, 368, 3]),
            tf.TensorShape([46, 46, connections_num*2]),
            tf.TensorShape([46, 46, keypoints_num]),
            tf.TensorShape([46, 46, connections_num*2]),
            tf.TensorShape([46, 46, keypoints_num])
            )
    )

    ds = ds.map(lambda x0, x1, x2, x3, x4: ((x0, x1, x2), (x3, x4, x3, x4, x3, x4, x3, x4, x3, x4, x3, x4)))
    ds = ds.batch(batch_size)

    return ds, size
コード例 #2
0
def get_dataset_vgg(annot_path, img_dir, batch_size, strict=False):
    def gen(df):
        def f():
            for i in df:
                yield tuple(i)

        return f

    df, size = get_dataflow_vgg(annot_path=annot_path,
                                img_dir=img_dir,
                                strict=strict,
                                x_size=368,
                                y_size=46,
                                include_outputs_masks=False)
    df.reset_state()
    ds = tf.data.Dataset.from_generator(
        gen(df), (tf.float32, tf.float32, tf.float32),
        output_shapes=(tf.TensorShape([368, 368,
                                       3]), tf.TensorShape([46, 46, 38]),
                       tf.TensorShape([46, 46, 19])))
    ds = ds.map(lambda x0, x1, x2:
                (x0, (x1, x2, x1, x2, x1, x2, x1, x2, x1, x2, x1, x2)))
    ds = ds.batch(batch_size)

    return ds, size
コード例 #3
0
def get_dataset_with_masks(annot_path, img_dir, batch_size, strict=False, x_size=368, y_size=46):
# def get_dataset_with_masks(annot_path, img_dir, batch_size, strict=False, x_size=48, y_size=64):
    def gen(df):
        def f():
            for i in df:
                yield tuple(i)
        return f

    df, size = get_dataflow_vgg(
        annot_path=annot_path,
        img_dir=img_dir,
        strict=strict,
        x_size=x_size,
        y_size=y_size,
        include_outputs_masks=True

    )
    df.reset_state()

    ds = tf.data.Dataset.from_generator(
        gen(df), (tf.float32, tf.float32, tf.float32, tf.float32, tf.float32),
        output_shapes=(
            tf.TensorShape([x_size, x_size, 3]),
            tf.TensorShape([y_size, y_size, 12]),#TODO
            tf.TensorShape([y_size, y_size, 6]),
            tf.TensorShape([y_size, y_size, 12]),
            tf.TensorShape([y_size, y_size, 6]),#TODO
            )
    )

    ds = ds.map(lambda x0, x1, x2, x3, x4: ((x0, x1, x2), (x3, x4)))
    ds = ds.batch(batch_size)

    return ds, size