コード例 #1
0
def get_data():
    """
    获取数据
    """
    (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True,
                                                      flatten=True,
                                                      one_hot_label=False)
    return x_test, t_test
コード例 #2
0
import sys, os
sys.path.append(os.pardir)
import numpy as np
from dataset.minist import load_mnist
from PIL import Image


def img_show(img):
    pil_img = Image.fromarray(np.uint8(img))
    pil_img.show()


(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True,
                                                  normalize=False)
img = x_train[0]
label = t_train[0]
print(label)

print(img.shape)
img = img.reshape(28, 28)
print(img.shape)

img_show(img)
コード例 #3
0
# coding: utf-8
import os
import sys
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np + self.weight_decay_lambda * self.params['W' + str(idx)]
            grads['b' + str(idx)] = self.layers['Affine' + str(idx)].d
import matplotlib.pyplot as plt
from dataset.minist import load_mnist
from commom.multi_layer_net_extend import MultiLayerNetExtend
from commom.trainer import Trainer

(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)

# 为了再现过拟合,减少学习数据
x_train = x_train[:300]
t_train = t_train[:300]

# 设定是否使用Dropuout,以及比例 ========================
use_dropout = True  # 不使用Dropout的情况下为False
dropout_ratio = 0.2
# ====================================================

network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, 100],
                              output_size=10, use_dropout=use_dropout, dropout_ration=dropout_ratio)
trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=301, mini_batch_size=100,
                  optimizer='sgd', optimizer_param={'lr': 0.01}, verbose=True)
trainer.train()

train_acc_list, test_acc_list = trainer.train_acc_list, trainer.test_acc_list
コード例 #4
0
ファイル: mnist_show.py プロジェクト: xieyipeng/DeepLearning
# TODO: load mnist data
import sys
import os

sys.path.append(os.pardir)
from dataset.minist import load_mnist

(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False,one_hot_label=True)

# print(x_train.shape)
# print(t_train.shape)
# print(x_test.shape)
# print(t_test.shape)

# TODO: show the first img
import numpy as np
from PIL import Image


def img_show(img):
    pil_img = Image.fromarray(np.uint8(img))
    pil_img.show()


img = x_train[0]
label = t_train[0]

print(label)
print(img.shape)
img = img.reshape(28, 28)  # 还原成原来的尺寸
print(img.shape)
コード例 #5
0
# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.minist import load_mnist
from ch08.deep_convnet import DeepConvNet
from commom.trainer import Trainer

(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

network = DeepConvNet()
trainer = Trainer(network,
                  x_train,
                  t_train,
                  x_test,
                  t_test,
                  epochs=20,
                  mini_batch_size=100,
                  optimizer='Adam',
                  optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

# 保存参数
network.save_params("deep_convnet_params.pkl")
print("Saved Network Parameters!")
コード例 #6
0
import sys, os

sys.path.append(os.pardir)
import numpy as np
from dataset.minist import load_mnist
from ch05.two_layer_net import TwoLayerNet

(x_train, t_train), (x_test, y_test) = load_mnist(normalize=True,
                                                  one_hot_label=True)
network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

if __name__ == '__main__':
    x_batch = x_train[:3]
    t_batch = t_train[:3]

    grad_numerical = network.numerical_gradient(x_batch, t_batch)
    grad_backprop = network.gradient(x_batch, t_batch)

    for key in grad_numerical.keys():
        diff = np.average(np.abs(grad_backprop[key] - grad_numerical[key]))
        print(key + ": " + str(diff))
コード例 #7
0
def get_data():
    (x_train, t_train), (x_test, t_test) = load_mnist(flatten=True,
                                                      normalize=True)
    return x_test, t_test