def evaluate_net(net, dataset, devkit_path, mean_pixels, data_shape, model_prefix, epoch, ctx, year=None, sets='test', batch_size=1, nms_thresh=0.5, force_nms=False): """ Evaluate entire dataset, basically simple wrapper for detections Parameters: --------- dataset : str name of dataset to evaluate devkit_path : str root directory of dataset mean_pixels : tuple of float (R, G, B) mean pixel values data_shape : int resize input data shape model_prefix : str load model prefix epoch : int load model epoch ctx : mx.ctx running context, mx.cpu() or mx.gpu(0)... year : str or None evaluate on which year's data sets : str evaluation set batch_size : int using batch_size for evaluation nms_thresh : float non-maximum suppression threshold force_nms : bool force suppress different categories """ # set up logger logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.INFO) if dataset == "pascal": if not year: year = '2007' imdb = PascalVoc(sets, year, devkit_path, shuffle=False, is_train=False) data_iter = DetIter(imdb, batch_size, data_shape, mean_pixels, rand_samplers=[], rand_mirror=False, is_train=False, shuffle=False) sys.path.append(os.path.join(cfg.ROOT_DIR, 'symbol')) net = importlib.import_module("symbol_" + net) \ .get_symbol(imdb.num_classes, nms_thresh, force_nms) model_prefix += "_" + str(data_shape) detector = Detector(net, model_prefix, epoch, data_shape, mean_pixels, batch_size, ctx) logger.info("Start evaluation with {} images, be patient...".format(imdb.num_images)) detections = detector.detect(data_iter) imdb.evaluate_detections(detections) else: raise NotImplementedError, "No support for dataset: " + dataset
def evaluate_net(net, dataset, devkit_path, mean_pixels, data_shape, model_prefix, epoch, ctx, year=None, sets='test', batch_size=1, nms_thresh=0.5, force_nms=False): """ Evaluate entire dataset, basically simple wrapper for detections Parameters: --------- dataset : str name of dataset to evaluate devkit_path : str root directory of dataset mean_pixels : tuple of float (R, G, B) mean pixel values data_shape : int resize input data shape model_prefix : str load model prefix epoch : int load model epoch ctx : mx.ctx running context, mx.cpu() or mx.gpu(0)... year : str or None evaluate on which year's data sets : str evaluation set batch_size : int using batch_size for evaluation nms_thresh : float non-maximum suppression threshold force_nms : bool force suppress different categories """ # set up logger logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.INFO) if dataset == "pascal": if not year: year = '2007' imdb = PascalVoc(sets, year, devkit_path, shuffle=False, is_train=False) data_iter = DetIter(imdb, batch_size, data_shape, mean_pixels, rand_samplers=[], rand_mirror=False, is_train=False, shuffle=False) sys.path.append(os.path.join(cfg.ROOT_DIR, 'symbol')) net = importlib.import_module("symbol_" + net) \ .get_symbol(imdb.num_classes, nms_thresh, force_nms) model_prefix += "_" + str(data_shape) detector = Detector(net, model_prefix, epoch, data_shape, mean_pixels, batch_size, ctx) logger.info("Start evaluation with {} images, be patient...".format(imdb.num_images)) detections = detector.detect(data_iter) imdb.evaluate_detections(detections) else: raise NotImplementedError("No support for dataset: " + dataset)
def load_pascal(image_set, year, devkit_path, shuffle=False, class_names=None, true_negative=None): """ wrapper function for loading pascal voc dataset Parameters: ---------- image_set : str train, trainval... year : str 2007, 2012 or combinations splitted by comma devkit_path : str root directory of dataset shuffle : bool whether to shuffle initial list Returns: ---------- Imdb """ image_set = [y.strip() for y in image_set.split(',')] assert image_set, "No image_set specified" year = [y.strip() for y in year.split(',')] assert year, "No year specified" # make sure (# sets == # years) if len(image_set) > 1 and len(year) == 1: year = year * len(image_set) if len(image_set) == 1 and len(year) > 1: image_set = image_set * len(year) assert len(image_set) == len(year), "Number of sets and year mismatch" imdbs = [] for s, y in zip(image_set, year): imdbs.append( PascalVoc(s, y, devkit_path, shuffle, is_train=True, class_names=class_names, true_negative_images=true_negative)) if len(imdbs) > 1: return ConcatDB(imdbs, shuffle) else: return imdbs[0]
def load_pascal(shuffle=False, is_valid=False): """ wrapper function for loading pascal voc dataset Parameters: ---------- image_set : str train, trainval... year : str 2007, 2012 or combinations splitted by comma devkit_path : str root directory of dataset shuffle : bool whether to shuffle initial list Returns: ---------- Imdb """ root_path = private_config.root_path if is_valid: image_set = private_config.valid_image_set data_path = private_config.valid_data_path else: data_path = private_config.data_path image_set = private_config.image_set image_set = [y.strip() for y in image_set.split(',')] assert image_set, "No image_set specified" imdbs = [] for s in image_set: imdbs.append( PascalVoc(s, data_path=data_path, root_path=root_path, shuffle=shuffle, is_train=True)) if len(imdbs) > 1: raise NotImplementedError return ConcatDB(imdbs, shuffle) else: return imdbs[0]
RandCropper(min_scale=.3, min_aspect_ratio=.5, max_aspect_ratio=2., min_overlap=.1), RandCropper(min_scale=.3, min_aspect_ratio=.5, max_aspect_ratio=2., min_overlap=.3), RandCropper(min_scale=.3, min_aspect_ratio=.5, max_aspect_ratio=2., min_overlap=.5), RandCropper(min_scale=.3, min_aspect_ratio=.5, max_aspect_ratio=2., min_overlap=.7), RandPadder(max_scale=2., min_aspect_ratio=.5, max_aspect_ratio=2., min_gt_scale=.05), RandPadder(max_scale=3., min_aspect_ratio=.5, max_aspect_ratio=2., min_gt_scale=.05), RandPadder(max_scale=4., min_aspect_ratio=.5, max_aspect_ratio=2., min_gt_scale=.05) ], "random_flip": True, "shuffle": True, "random_seed": None } # # validation # cfg.VALID = edict() # cfg.VALID.RAND_SAMPLERS = [] # cfg.VALID.RAND_MIRROR = False # cfg.VALID.INIT_SHUFFLE = False # cfg.VALID.EPOCH_SHUFFLE = False # cfg.VALID.RAND_SEED = None ssd_prov = DetIter( imdb=PascalVoc("trainval", "2007", "/unsullied/sharefs/yugang/Dataset/VOC", is_train=True), batch_size=32, data_shape=(300, 300), mean_pixels=[104, 117, 123], rand_samplers=train_cfg['random_samplers'], rand_flip=train_cfg['random_flip'], shuffle=train_cfg['shuffle'], rand_seed=train_cfg['random_seed'] )