コード例 #1
0
def predict_model(test_fnames, x_test, test_transforms, num_classes, *, tta=5):
    batch_size = 64

    test_dataset = dataset.TestDataset(test_fnames,
                                       x_test,
                                       test_transforms,
                                       tta=tta)
    test_loader = DataLoader(test_dataset,
                             batch_size=batch_size,
                             shuffle=False,
                             pin_memory=True)

    net = model.MainModel(model_type='Simple', num_classes=num_classes)
    net = net.model.cuda()
    net.load_state_dict(torch.load('weight_best.pt'))
    net.cuda()
    net.eval()

    all_outputs, all_fnames = [], []

    for images, fnames in test_loader:
        preds = torch.sigmoid(net(images.cuda()).detach())
        all_outputs.append(preds.cpu().numpy())
        all_fnames.extend(fnames)

    test_preds = pd.DataFrame(data=np.concatenate(all_outputs),
                              index=all_fnames,
                              columns=map(str, range(num_classes)))
    test_preds = test_preds.groupby(level=0).mean()

    return test_preds
コード例 #2
0
ファイル: test.py プロジェクト: sieut/traffic-classification
def main():
    state = torch.load(MODEL)
    net = train.Net()
    net.load_state_dict(state)

    data = dataset.TestDataset(start=2639, size=267)
    # data = dataset.TestDataset(start=2907, size=166)
    # data = dataset.TestDataset(start=3073, size=166)
    # data = dataset.TestDataset(start=2639, size=600)
    loader = DataLoader(data, batch_size=1)
    calc_score(loader, net, "cpu")
コード例 #3
0
def main(
    experiment_name,
    dropout_p,
    batch_size,
    num_workers,
    augmentation,
    folds,
):
    transforms = make_augmentation_transforms(augmentation, mode='test')
    test_dataset = dataset.TestDataset(transform=transforms)
    model = make_nasnet_model(
        num_classes=config.NUM_CLASSES,
        dropout_p=dropout_p,
    )
    test_data_loader = DataLoader(
        dataset=test_dataset,
        batch_size=batch_size,
        num_workers=num_workers,
        shuffle=False,
        pin_memory=True,
    )
    test_predictions = np.zeros((folds, len(test_dataset), config.NUM_CLASSES))
    for fold_num in range(folds):
        checkpoint = load_checkpoint(
            f'{experiment_name}_{fold_num}_{folds}_best.pth')
        model.load_state_dict(checkpoint['state_dict'])
        model = model.cuda().eval()
        with torch.no_grad():
            for batch_index, (waves, _) in enumerate(tqdm(test_data_loader)):
                waves = Variable(waves).cuda()
                logits = model(waves)
                probs = F.softmax(logits, dim=1)
                numpy_probs = probs.cpu().data.numpy()
                start_index = batch_index * batch_size
                end_index = start_index + numpy_probs.shape[0]
                test_predictions[fold_num, start_index:end_index] = numpy_probs
    save_predictions(test_predictions, f'{experiment_name}.pkl')
コード例 #4
0
ファイル: train.py プロジェクト: zzzhangxuuu/huawei-garbage
def main():
    global best_acc
    start_epoch = args.start_epoch  # start from epoch 0 or last checkpoint epoch

    if not os.path.isdir(args.checkpoint):
        mkdir_p(args.checkpoint)

    # Data
    transform = get_transforms(input_size=args.image_size,
                               test_size=args.image_size,
                               backbone=None)

    print('==> Preparing dataset %s' % args.trainroot)
    trainset = dataset.Dataset(root=args.trainroot,
                               transform=transform['val_train'])
    train_loader = data.DataLoader(trainset,
                                   batch_size=args.train_batch,
                                   shuffle=True,
                                   num_workers=args.workers,
                                   pin_memory=True)

    valset = dataset.TestDataset(root=args.valroot,
                                 transform=transform['val_test'])
    val_loader = data.DataLoader(valset,
                                 batch_size=args.test_batch,
                                 shuffle=False,
                                 num_workers=args.workers,
                                 pin_memory=True)

    model = make_model(args)

    if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
        model.features = torch.nn.DataParallel(model.features)
        model.cuda()
    else:
        model = torch.nn.DataParallel(model).cuda()

    cudnn.benchmark = True
    print('    Total params: %.2fM' %
          (sum(p.numel() for p in model.parameters()) / 1000000.0))

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = get_optimizer(model, args)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode='min',
                                                           factor=0.2,
                                                           patience=5,
                                                           verbose=False)

    # Resume
    title = 'ImageNet-' + args.arch
    if args.resume:
        # Load checkpoint.
        print('==> Resuming from checkpoint..')
        assert os.path.isfile(
            args.resume), 'Error: no checkpoint directory found!'
        args.checkpoint = os.path.dirname(args.resume)
        checkpoint = torch.load(args.resume)
        best_acc = checkpoint['best_acc']
        start_epoch = checkpoint['epoch']
        model.module.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        logger = Logger(os.path.join(args.checkpoint, 'log.txt'),
                        title=title,
                        resume=True)
    else:
        logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
        logger.set_names([
            'Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.',
            'Valid Acc.'
        ])

    if args.evaluate:
        print('\nEvaluation only')
        test_loss, test_acc = test(val_loader, model, criterion, start_epoch,
                                   use_cuda)
        print(' Test Loss:  %.8f, Test Acc:  %.2f' % (test_loss, test_acc))
        return

    # Train and val
    for epoch in range(start_epoch, args.epochs):
        print('\nEpoch: [%d | %d] LR: %f' %
              (epoch + 1, args.epochs, optimizer.param_groups[0]['lr']))

        train_loss, train_acc, train_5 = train(train_loader, model, criterion,
                                               optimizer, epoch, use_cuda)
        test_loss, test_acc, test_5 = test(val_loader, model, criterion, epoch,
                                           use_cuda)

        scheduler.step(test_loss)

        # append logger file
        logger.append(
            [state['lr'], train_loss, test_loss, train_acc, test_acc])
        print(
            'train_loss:%f, val_loss:%f, train_acc:%f, train_5:%f, val_acc:%f, val_5:%f'
            % (train_loss, test_loss, train_acc, train_5, test_acc, test_5))

        # save model
        is_best = test_acc > best_acc
        best_acc = max(test_acc, best_acc)

        if len(args.gpu_id) > 1:
            save_checkpoint(
                {
                    'fold': 0,
                    'epoch': epoch + 1,
                    'state_dict': model.module.state_dict(),
                    'train_acc': train_acc,
                    'acc': test_acc,
                    'best_acc': best_acc,
                    'optimizer': optimizer.state_dict(),
                },
                is_best,
                single=True,
                checkpoint=args.checkpoint)
        else:
            save_checkpoint(
                {
                    'fold': 0,
                    'epoch': epoch + 1,
                    'state_dict': model.state_dict(),
                    'train_acc': train_acc,
                    'acc': test_acc,
                    'best_acc': best_acc,
                    'optimizer': optimizer.state_dict(),
                },
                is_best,
                single=True,
                checkpoint=args.checkpoint)

    logger.close()
    logger.plot()
    savefig(os.path.join(args.checkpoint, 'log.eps'))

    print('Best acc:')
    print(best_acc)
コード例 #5
0
ファイル: train.py プロジェクト: riverfjs/recode
def main():
    # Data
    TRAIN = args.trainroot
    VAL = args.valroot
    # TRAIN = '/content/train'
    # VAL = '/content/val'
    transform = get_transforms(input_size=args.image_size, test_size=args.image_size, backbone=None)

    print('==> Preparing dataset %s' % args.trainroot)
    # trainset = datasets.ImageFolder(root=TRAIN, transform=transform['train'])
    # valset = datasets.ImageFolder(root=VAL, transform=transform['val'])
    trainset = dataset.Dataset(root=args.trainroot, transform=transform['train'])
    valset = dataset.TestDataset(root=args.valroot, transform=transform['val'])

    train_loader = DataLoader(
        trainset, 
        batch_size=args.train_batch, 
        shuffle=True, 
        num_workers=args.workers, 
        pin_memory=True)
    
    val_loader = DataLoader(
        valset, 
        batch_size=args.test_batch, 
        shuffle=False, 
        num_workers=args.workers,
        pin_memory=True)

    # model initial
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = make_model(args)

    # TODO:merge in function
    for k,v in model.named_parameters():
      # print("{}: {}".format(k,v.requires_grad))
      if not k.startswith('layer4') and not k.startswith('fc'):
        # print(k)
        v.requires_grad = False
    # sys.exit(0)
    if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
        model.features = torch.nn.DataParallel(model.features)
        model.cuda()
    elif args.ngpu:
        model = torch.nn.DataParallel(model).cuda()

    model.to(device)

    cudnn.benchmark = True

    print('Total params:%.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))  # 打印模型参数数量
    print('Trainable params:%.2fM' % (sum(p.numel() for p in model.parameters() if p.requires_grad)/ 1000000.0))
    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()
    optimizer = get_optimizer(model, args)
    
    # 基于标准的学习率更新
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, patience=5, verbose=False)

    # Resume
    epochs = args.epochs
    start_epoch = args.start_epoch
    title = 'log-' + args.arch
    if args.resume:
        # --resume checkpoint/checkpoint.pth.tar
        # load checkpoint
        print('Resuming from checkpoint...')
        assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!!'
        checkpoint = torch.load(args.resume)
        best_acc = checkpoint['best_acc']
        start_epoch = checkpoint['epoch']
        state_dict = checkpoint['state_dict']
        optim = checkpoint['optimizer']
        model.load_state_dict(state_dict, strict=False)
        optimizer.load_state_dict(optim)
        logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title, resume=True)
    else:
        logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
        # logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
        logger.set_names(['LR', 'epoch', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.',])
    
    # Evaluation:Confusion Matrix:Precision  Recall F1-score
    if args.evaluate and args.resume:
        print('\nEvaluate only')
        test_loss, test_acc, test_acc_5, predict_all, labels_all = test_model(val_loader, model, criterion, device, test=True)
        
        print('Test Loss:%.8f,Test top1:%.2f top5:%.2f' %(test_loss,test_acc,test_acc_5))
        # 混淆矩阵
        report = metrics.classification_report(labels_all,predict_all,target_names=class_list,digits=4)
        confusion = metrics.confusion_matrix(labels_all,predict_all)
        print('\n report ',report)
        print('\n confusion',confusion)
        with open(args.resume[:-3]+"txt", "w+") as f_obj:
          f_obj.write(report)
        # plot_Matrix(args.resume[:-3], confusion, class_list)
        return
    
    # model train and val
    best_acc = 0
    for epoch in range(start_epoch, epochs + 1):
        print('[{}/{}] Training'.format(epoch, args.epochs))
        # train
        train_loss, train_acc, train_acc_5 = train_model(train_loader, model, criterion, optimizer, device)
        # val
        test_loss, test_acc, test_acc_5 = test_model(val_loader, model, criterion, device, test=None)

        scheduler.step(test_loss)

        lr_ = optimizer.param_groups[0]['lr']
        # 核心参数保存logger
        logger.append([lr_, int(epoch), train_loss, test_loss, train_acc, test_acc,])
        print('train_loss:%f, val_loss:%f, train_acc:%f,  val_acc:%f, train_acc_5:%f,  val_acc_5:%f' % (train_loss, test_loss, train_acc, test_acc, train_acc_5, test_acc_5))
        # 保存模型 保存最优
        is_best = test_acc > best_acc
        best_acc = max(test_acc, best_acc)
        if not args.ngpu:
            name = 'checkpoint_' + str(epoch) + '.pth.tar'
        else:
            name = 'ngpu_checkpoint_' + str(epoch) + '.pth.tar'
        save_checkpoint({
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'train_acc': train_acc,
            'test_acc': test_acc,
            'best_acc': best_acc,
            'optimizer': optimizer.state_dict()

        }, is_best, checkpoint=args.checkpoint, filename=name)
        # logger.close()
        # logger.plot()
        # savefig(os.path.join(args.checkpoint, 'log.eps'))
        print('Best acc:')
        print(best_acc)
コード例 #6
0
ファイル: train.py プロジェクト: alievk/kaggle_camera
def main():
    parser = argparse.ArgumentParser()
    add_arguments(parser)
    args = parser.parse_args()
    run_dir = Path(args.run_dir)

    assert torch.cuda.is_available(), 'CUDA is not available'

    train_valid_transform_1 = transforms.Compose([
        RandomCrop(args.input_size),
        RandomRotation(),  # x4
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])

    # train_valid_transform_2 = transforms.Compose([
    #     CenterCrop(args.input_size),
    #     RandomRotation(),  # x4
    #     transforms.ToTensor(),
    #     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # ])

    def init_loaders(transform):
        fix_path = utils.fix_jpg_tif
        # do_manip gives x8 samples
        train_dataset = D.ConcatDataset([
            dataset.CSVDataset(dataset.TRAINVAL_SET,
                               args,
                               transform=transform,
                               do_manip=True,
                               repeats=1,
                               fix_path=fix_path),
            dataset.CSVDataset(dataset.FLICKR_TRAIN_SET,
                               args,
                               transform=transform,
                               do_manip=True,
                               repeats=1,
                               fix_path=fix_path)
        ])
        valid_dataset = D.ConcatDataset([
            dataset.CSVDataset(dataset.FLICKR_VALID_SET,
                               args,
                               transform=transform,
                               do_manip=True,
                               repeats=1,
                               fix_path=fix_path),
            dataset.CSVDataset(dataset.REVIEWS_SET,
                               args,
                               transform=transform,
                               do_manip=True,
                               repeats=1,
                               fix_path=fix_path)
        ])

        train_loader = D.DataLoader(train_dataset,
                                    batch_size=args.batch_size,
                                    shuffle=True,
                                    num_workers=args.workers,
                                    pin_memory=True)
        valid_loader = D.DataLoader(valid_dataset,
                                    batch_size=args.batch_size,
                                    shuffle=False,
                                    num_workers=args.workers,
                                    pin_memory=True)

        return train_loader, valid_loader

    train_loader_1, valid_loader_1 = init_loaders(train_valid_transform_1)
    # train_loader_2, valid_loader_2 = init_loaders(train_valid_transform_2)

    test_transform = transforms.Compose([
        CenterCrop(args.input_size),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    test_dataset = dataset.TestDataset(transform=test_transform)
    test_loader = D.DataLoader(test_dataset,
                               batch_size=args.batch_size,
                               num_workers=args.workers)

    model = getattr(models, args.model)(num_classes=dataset.NUM_CLASSES,
                                        pretrained=True)
    model = N.DataParallel(model).cuda()

    loss = N.CrossEntropyLoss()

    if 'train' == args.mode:
        if run_dir.exists() and args.clean:
            shutil.rmtree(str(run_dir))
        run_dir.mkdir(exist_ok=True)
        run_dir.joinpath('params.json').write_text(
            json.dumps(vars(args), indent=True, sort_keys=True))
        subprocess.check_call("git diff $(find . -name '*.py') > {}".format(
            run_dir / 'patch'),
                              shell=True)

        def init_optimizer(lr, lr_changes):
            return O.Adam(model.parameters(), lr=lr)
            # return O.SGD([{'params': model.feature_parameters(), 'lr': lr},
            #               {'params': model.classifier_parameters(), 'lr': 1e-6}], momentum=0.9)
            # if lr_changes == 0:
            #     return O.SGD([{'params': model.module.feature_parameters(), 'lr': lr},
            #                   {'params': model.module.classifier_parameters(), 'lr': 1e-6}],
            #                   momentum=0.9)
            # else:
            #     return O.SGD([{'params': model.module.feature_parameters(), 'lr': lr},
            #                   {'params': model.module.classifier_parameters(), 'lr': 1e-4}],
            #                   momentum=0.9)

        train_kwargs = {
            'args': args,
            'model': model,
            'criterion': loss,
        }

        # Train on random crops on full image
        train(
            init_optimizer=init_optimizer,
            lr=args.lr,
            train_loader=train_loader_1,
            valid_loader=valid_loader_1,
            # n_epochs=20,
            **train_kwargs)

        # Train on central crops
        # train(
        #     init_optimizer=init_optimizer,
        #     lr=args.lr,
        #     train_loader=train_loader_2,
        #     valid_loader=valid_loader_2,
        #     **train_kwargs)
    elif args.mode in ['valid', 'predict_valid', 'predict_test']:
        if 'best' == args.checkpoint:
            ckpt = (run_dir / 'best-model.pt')
        else:
            ckpt = (run_dir / 'model.pt')
        state = torch.load(str(ckpt))
        model.load_state_dict(state['model'])
        print('Loaded {}'.format(ckpt))
        if 'valid' == args.mode:
            validation(tqdm.tqdm(valid_loader_1, desc='Validation'), model,
                       loss)
        elif 'predict_valid' == args.mode:
            preds, targets, manips = predict_valid(valid_loader_2, model)
            save_valid_predictions(preds, targets, manips, args)
        elif 'predict_test' == args.mode:
            preds, paths = predict_test(test_loader, model, args.tta)
            save_test_predictions(preds, paths, args)
    else:
        raise ValueError('Unknown mode {}'.format(args.mode))
コード例 #7
0
# 3개
model_age = model_functions.load_models(
    'effi-b7', "/opt/ml/model_location/0408/efficientb7_test/age/1",
    "best_model.pth")
model_gender = model_functions.load_models(
    'effi-b6', "/opt/ml/model_location/0408/efficientb7_test/gender/1",
    "best_model.pth")
model_mask = model_functions.load_models(
    'effi-b4', "/opt/ml/model_location/0408/efficientb7_test/mask/1",
    "best_model.pth")

# Test Dataset 클래스 객체를 생성하고 DataLoader를 만듭니다.
test_csv = dataset.test_csv
image_paths = dataset.image_paths
transformation = dataset.make_transform(transform_type=('test'))
test_dataset = dataset.TestDataset(image_paths, transformation['test'])

loader = DataLoader(test_dataset, shuffle=False)


# 모델이 테스트 데이터셋을 예측하고 결과를 저장합니다.
def make_prediction(model_su, model_list, csv_file, data_loader):
    all_predictions = []
    # 단일 모델로 클래스 18개 분류할 때
    if model_su == 1:
        model = model_list[0]
        model.cuda().float()
        model.eval()

        for images in tqdm(data_loader):
            with torch.no_grad():
コード例 #8
0
ファイル: train.py プロジェクト: zhangchih/MPNRGAN
print(opt)

if opt.cuda and not torch.cuda.is_available():
    raise Exception("No GPU found, please run without --cuda")

print('===> Loading datasets')
root_path = '/'
train_set_path = os.path.join(root_path, 'train_set')
prior_set_path = os.path.join(root_path, 'prior_set')
test_set_path = os.path.join(root_path, 'test_set')
train_set = dataset.TrainDataset(train_set_path,
                                 filenumber=11,
                                 sample_number=1000)
train_unpair_set = dataset.PriorDataset(prior_set_path, sample_number=1000)
test_set = dataset.TestDataset(test_set_path)
training_iterator = DataLoader(dataset=train_set,
                               batch_size=opt.batch_size,
                               num_workers=opt.threads,
                               shuffle=True)
train_unpair_iterator = DataLoader(dataset=train_unpair_set,
                                   batch_size=opt.batch_size,
                                   num_workers=opt.threads,
                                   shuffle=True)
test_iterator = DataLoader(dataset=test_set,
                           batch_size=opt.batch_size,
                           num_workers=opt.threads,
                           shuffle=True)

device = torch.device("cuda:0" if opt.cuda else "cpu")
コード例 #9
0
def MyDNN(opt):
    # ----------------------------------------
    #       Network training parameters
    # ----------------------------------------

    # cudnn benchmark
    cudnn.benchmark = opt.cudnn_benchmark

    # configurations
    save_folder = os.path.join(opt.save_path, opt.task)
    sample_folder = os.path.join(opt.sample_path, opt.task)
    if not os.path.exists(save_folder):
        os.makedirs(save_folder)
    if not os.path.exists(sample_folder):
        os.makedirs(sample_folder)

    # Loss functions
    criterion_L1 = torch.nn.L1Loss().cuda()
    criterion_L2 = torch.nn.MSELoss().cuda()
    mse_loss = nn.MSELoss().cuda()
    ms_ssim_module = MS_SSIM(data_range=2,
                             size_average=True,
                             channel=3,
                             nonnegative_ssim=True)
    # Pretrained VGG
    # vgg = MINCFeatureExtractor(opt).cuda()
    # Initialize Generator
    generator = utils.create_MyDNN(opt)
    use_checkpoint = False
    if use_checkpoint:
        checkpoint_path = './MyDNN1_denoise_epoch175_bs1'
        # Load a pre-trained network
        pretrained_net = torch.load(checkpoint_path + '.pth')
        load_dict(generator, pretrained_net)
        print('Generator is loaded!')
    # To device
    if opt.multi_gpu:
        generator = nn.DataParallel(generator)
        generator = generator.cuda()
    else:
        generator = generator.cuda()

    # Optimizers
    optimizer_G = torch.optim.Adam(generator.parameters(),
                                   lr=opt.lr_g,
                                   betas=(opt.b1, opt.b2),
                                   weight_decay=opt.weight_decay)

    # Learning rate decrease
    def adjust_learning_rate(opt, epoch, iteration, optimizer):
        #Set the learning rate to the initial LR decayed by "lr_decrease_factor" every "lr_decrease_epoch" epochs
        if opt.lr_decrease_mode == 'epoch':
            lr = opt.lr_g * (opt.lr_decrease_factor
                             **(epoch // opt.lr_decrease_epoch))
            if epoch < 200:
                lr = 0.0001
            if epoch >= 200:
                lr = 0.00005
            if epoch >= 300:
                lr = 0.00001
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
        if opt.lr_decrease_mode == 'iter':
            lr = opt.lr_g * (opt.lr_decrease_factor
                             **(iteration // opt.lr_decrease_iter))
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
        return lr

    # Save the model if pre_train == True
    def save_model(opt, epoch, iteration, len_dataset, generator, val_PSNR,
                   best_PSNR):
        """Save the model at "checkpoint_interval" and its multiple"""
        if opt.save_best_model and best_PSNR == val_PSNR:
            torch.save(generator,
                       'final_%s_epoch%d_best.pth' % (opt.task, epoch))
            print('The best model is successfully saved at epoch %d' % (epoch))
        if opt.multi_gpu == True:
            if opt.save_mode == 'epoch':
                if (epoch % opt.save_by_epoch
                        == 0) and (iteration % len_dataset == 0):
                    if opt.save_name_mode:
                        torch.save(
                            generator.module, 'MyDNN1_%s_epoch%d_bs%d.pth' %
                            (opt.task, epoch, opt.batch_size))
                        print(
                            'The trained model is successfully saved at epoch %d'
                            % (epoch))
            if opt.save_mode == 'iter':
                if iteration % opt.save_by_iter == 0:
                    if opt.save_name_mode:
                        torch.save(
                            generator.module, 'MyDNN1_%s_iter%d_bs%d.pth' %
                            (opt.task, iteration, opt.batch_size))
                        print(
                            'The trained model is successfully saved at iteration %d'
                            % (iteration))
        else:
            if opt.save_mode == 'epoch':
                if (epoch % opt.save_by_epoch
                        == 0) and (iteration % len_dataset == 0):
                    if opt.save_name_mode:
                        torch.save(
                            generator, 'final_%s_epoch%d_bs%d.pth' %
                            (opt.task, epoch, opt.batch_size))
                        print(
                            'The trained model is successfully saved at epoch %d'
                            % (epoch))

            if opt.save_mode == 'iter':
                if iteration % opt.save_by_iter == 0:
                    if opt.save_name_mode:
                        torch.save(
                            generator, 'final_%s_iter%d_bs%d.pth' %
                            (opt.task, iteration, opt.batch_size))
                        print(
                            'The trained model is successfully saved at iteration %d'
                            % (iteration))

    # ----------------------------------------
    #             Network dataset
    # ----------------------------------------

    # Define the dataloader
    # trainset = dataset.TestDataset(opt)
    trainset = dataset.Noise2CleanDataset(opt)
    print('The overall number of training images:', len(trainset))
    testset = dataset.TestDataset(opt)
    valset = dataset.ValDataset(opt)
    print('The overall number of val images:', len(valset))
    # Define the dataloader
    dataloader = DataLoader(trainset,
                            batch_size=opt.batch_size,
                            shuffle=True,
                            num_workers=opt.num_workers,
                            pin_memory=True)
    val_loader = DataLoader(valset,
                            batch_size=opt.batch_size,
                            shuffle=True,
                            num_workers=opt.num_workers,
                            pin_memory=True)
    test_loader = DataLoader(testset,
                             batch_size=opt.batch_size,
                             shuffle=True,
                             num_workers=opt.num_workers,
                             pin_memory=True)
    # ----------------------------------------
    #                 Training
    # ----------------------------------------

    # Count start time
    prev_time = time.time()
    best_PSNR = 0
    # For loop training
    for epoch in range(opt.epochs):
        total_loss = 0
        total_ploss = 0
        total_sobel = 0
        total_Lap = 0
        for i, (true_input, simulated_input, true_target,
                noise_level_map) in enumerate(dataloader):

            # To device
            true_input = true_input.cuda()
            true_target = true_target.cuda()
            simulated_input = simulated_input.cuda()
            noise_level_map = noise_level_map.cuda()
            # Train Generator
            optimizer_G.zero_grad()
            pre_clean = generator(true_input)

            # Parse through VGGMINC layers
            # features_y = vgg(pre_clean)
            # features_x = vgg(true_input)
            # content_loss =  criterion_L2(features_y, features_x).

            pre = pre_clean[0, :, :, :].data.permute(1, 2, 0).cpu().numpy()
            pre = rgb2gray(pre)
            true = true_input[0, :, :, :].data.permute(1, 2, 0).cpu().numpy()
            true = rgb2gray(true)
            laplacian_pre = cv2.Laplacian(pre, cv2.CV_32F)  #CV_64F为图像深度
            laplacian_gt = cv2.Laplacian(true, cv2.CV_32F)  #CV_64F为图像深度
            sobel_pre = 0.5 * (cv2.Sobel(pre, cv2.CV_32F, 1, 0, ksize=5) +
                               cv2.Sobel(pre, cv2.CV_32F, 0, 1, ksize=5)
                               )  #1,0参数表示在x方向求一阶导数
            sobel_gt = 0.5 * (cv2.Sobel(true, cv2.CV_32F, 1, 0, ksize=5) +
                              cv2.Sobel(true, cv2.CV_32F, 0, 1, ksize=5)
                              )  #0,1参数表示在y方向求一阶导数
            sobel_loss = mean_squared_error(sobel_pre, sobel_gt)
            laplacian_loss = mean_squared_error(laplacian_pre, laplacian_gt)
            # L1 Loss
            Pixellevel_L1_Loss = criterion_L1(pre_clean, true_target)

            # MS-SSIM loss
            ms_ssim_loss = 1 - ms_ssim_module(pre_clean + 1, true_target + 1)

            # Overall Loss and optimize
            loss = Pixellevel_L1_Loss + 0.5 * laplacian_loss
            # loss =  Pixellevel_L1_Loss
            loss.backward()
            optimizer_G.step()

            # Determine approximate time left
            iters_done = epoch * len(dataloader) + i
            iters_left = opt.epochs * len(dataloader) - iters_done
            time_left = datetime.timedelta(seconds=iters_left *
                                           (time.time() - prev_time))
            prev_time = time.time()
            total_loss = Pixellevel_L1_Loss.item() + total_loss
            # total_ploss = content_loss.item() + total_ploss
            total_sobel = sobel_loss + total_sobel
            total_Lap = laplacian_loss + total_Lap

            # # Print log
            print(
                "\r[Epoch %d/%d] [Batch %d/%d] [Pixellevel L1 Loss: %.4f] [laplacian_loss Loss: %.4f] [sobel_loss Loss: %.4f] Time_left: %s"
                % ((epoch + 1), opt.epochs, i, len(dataloader),
                   Pixellevel_L1_Loss.item(), laplacian_loss.item(),
                   sobel_loss.item(), time_left))
            img_list = [pre_clean, true_target, true_input]
            name_list = ['pred', 'gt', 'noise']
            utils.save_sample_png(sample_folder=sample_folder,
                                  sample_name='MyDNN_MS_epoch%d' % (epoch + 1),
                                  img_list=img_list,
                                  name_list=name_list,
                                  pixel_max_cnt=255)

            # Learning rate decrease at certain epochs
            lr = adjust_learning_rate(opt, (epoch + 1), (iters_done + 1),
                                      optimizer_G)
        print(
            "\r[Epoch %d/%d] [Batch %d/%d] [Pixellevel L1 Loss: %.4f] [laplacian_loss Loss: %.4f] [sobel_loss Loss: %.4f] Time_left: %s"
            % ((epoch + 1), opt.epochs, i, len(dataloader), total_loss / 320,
               total_Lap / 320, total_sobel / 320, time_left))
        ### Validation
        val_PSNR = 0
        be_PSNR = 0
        num_of_val_image = 0

        for j, (true_input, simulated_input, true_target,
                noise_level_map) in enumerate(val_loader):

            # To device
            # A is for input image, B is for target image
            true_input = true_input.cuda()
            true_target = true_target.cuda()

            # Forward propagation
            with torch.no_grad():
                pre_clean = generator(true_input)

            # Accumulate num of image and val_PSNR
            num_of_val_image += true_input.shape[0]
            val_PSNR += utils.psnr(pre_clean, true_target,
                                   255) * true_input.shape[0]
            be_PSNR += utils.psnr(true_input, true_target,
                                  255) * true_input.shape[0]
        val_PSNR = val_PSNR / num_of_val_image
        be_PSNR = be_PSNR / num_of_val_image

        # Record average PSNR
        print('PSNR at epoch %d: %.4f' % ((epoch + 1), val_PSNR))
        print('PSNR before denoising %d: %.4f' % ((epoch + 1), be_PSNR))
        best_PSNR = max(val_PSNR, best_PSNR)
        # Save model at certain epochs or iterations
        save_model(opt, (epoch + 1), (iters_done + 1), len(dataloader),
                   generator, val_PSNR, best_PSNR)