コード例 #1
0
    x = UpSampling1D(2)(x)

    out = Conv1D(6, kernel1, activation='softmax', padding='same')(x)
    outputs.append(out)
    outputs.append(y_out)
    # x = Conv1D(6, 20, activation="relu", padding='same')(x)

    autoencoder = Model(inputs, outputs)
    autoencoder.compile(optimizer='adam', loss='categorical_crossentropy')
    return autoencoder


def autocorr(x):
    result = np.correlate(x, x, mode='full')
    return result[len(result) // 2:]


if __name__ == "__main__":
    import numpy as np

    MODEL_PATH = "triple_binary_detection"

    model = build_triple_detection_network((4096, 1))
    plot_model(model)
    model = load_model("models\\" + MODEL_PATH + "_ma.h5")
    model.summary()
    X = load_good_holter()

    model = train_eval(model, X, only_eval=True, save_path=MODEL_PATH, generator=artefact_for_detection_3_in_2_out,
                       size=4096, epochs=50)
コード例 #2
0
        if name == "dual_detection":
            generator = artefact_for_detection_dual
        elif name == "triple_detection":
            generator = artefact_for_detection_3_in_2_out
        else:
            generator = artefact_for_detection

        res, _ = load_split()
        path = "C:\\Users\\donte_000\\Downloads\\Telegram Desktop\\noise_lbl.csv"
        idxs = pd.read_csv(path, encoding='utf-8', sep=";")['i']
        X = load_dataset()["x"]
        x = X[np.where(idxs == 0, True, False), :, 0]
        x = np.expand_dims(x, 2)
        res1 = [0, 0]
        res1[0], res1[1] = train_test_split(x, test_size=0.25, random_state=42)

        res2 = load_good_holter()

        res3 = [0, 0]
        X = load_mit()
        res3[0], res3[1] = train_test_split(X, test_size=0.1, random_state=32)

        train_eval(model, (res1[0], res1[1]),
                   only_eval=True,
                   save_path=name + "_mit_test2",
                   generator=generator,
                   size=4096,
                   epochs=100,
                   noise_prob=[1 / 5, 1 / 5, 1 / 5, 1 / 5, 1 / 5, 0],
                   noise_type='em')