コード例 #1
0
def validate(batch_size=10, iter_num=10):
    logger = logging.getLogger("log.test.mx.quantize")

    ctx = [mx.gpu(int(i)) for i in "1,2,3,4,5,6,7".split(',') if i.strip()]
    input_size = 299
    h, w = input_size, input_size
    inputs_ext = {
        'data': {
            'shape': (batch_size, 3, h, w),
        }
    }
    inputs = [mx.sym.var(n) for n in inputs_ext]

    data_iter = ds.load_imagenet_rec(batch_size, input_size)

    def data_iter_func():
        data = data_iter.next()
        return data.data[0], data.label[0]

    #  data, _ = data_iter_func()

    net1 = utils.load_model(*load_fname("_v3"), inputs, ctx=ctx)

    def graph_func(data):
        data = gluon.utils.split_and_load(data,
                                          ctx_list=ctx,
                                          batch_axis=0,
                                          even_split=False)
        res = [net1.forward(d) for d in data]
        return nd.concatenate(res)

    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)
    acc_top1.reset()
    acc_top5.reset()
    net2 = utils.load_model(*load_fname("v3"), inputs, ctx=ctx)

    def gluon_cv(data, label):
        data = gluon.utils.split_and_load(data,
                                          ctx_list=ctx,
                                          batch_axis=0,
                                          even_split=False)
        res = [net2.forward(d) for d in data]
        res = nd.concatenate(res)
        acc_top1.update(label, res)
        _, top1 = acc_top1.get()
        acc_top5.update(label, res)
        _, top5 = acc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    utils.multi_validate(gluon_cv,
                         data_iter_func,
                         iter_num=iter_num,
                         logger=logger)
コード例 #2
0
def test_sym_nnvm():
    logger = logging.getLogger("log.test.nnvm")
    logger.info("=== Log Test NNVM ===")

    dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
    sym, params = mx.sym.load(dump_sym), nd.load(dump_params)
    (inputs_ext,) = sim.load_ext(dump_ext)
    data_iter = ds.load_imagenet_rec(1)
    data = data_iter.next().data[0]

    _mrt.std_dump(sym, params, inputs_ext, data, "mobilenet"+version)
コード例 #3
0
def test_sym_nnvm(batch_size=10, iter_num=10):
    logger = logging.getLogger("log.test.nnvm")
    logger.info("=== Log Test NNVM ===")

    dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
    sym, params = mx.sym.load(dump_sym), nd.load(dump_params)
    (inputs_ext, ) = sim.load_ext(dump_ext)
    data_iter = ds.load_imagenet_rec(batch_size, 224)
    data = data_iter.next().data[0]

    _mrt.std_dump(sym, params, inputs_ext, data, "shufflenet", max_num=100)
コード例 #4
0
def test_sym_nnvm(batch_size=10, iter_num=10):
    logger = logging.getLogger("log.test.nnvm")
    logger.info("=== Log Test NNVM ===")

    version = "v3"
    dump_sym, dump_params, dump_ext = load_fname(version, "mrt", True)
    '''
    byr---------
    ./data/tf_inceptionv3.mrt.json
    ./data/tf_inceptionv3.mrt.params
    ./data/tf_inceptionv3.mrt.ext
    byr--------
    '''
    sym, params = mx.sym.load(dump_sym), nd.load(dump_params)
    (inputs_ext, ) = sim.load_ext(dump_ext)
    data_iter = ds.load_imagenet_rec(batch_size, 299)
    data = data_iter.next().data[0]

    _mrt.std_dump(sym, params, inputs_ext, data, "inception_v3")
コード例 #5
0
def load_fname(version, suffix=None, with_ext=False):
    suffix = "." + suffix if suffix is not None else ""
    prefix = "./data/alexnet%s%s" % (version, suffix)
    return utils.extend_fname(prefix, with_ext=with_ext)


batch_size = 700
input_size = 224
inputs_ext = {'data': {'shape': (batch_size, 3, input_size, input_size)}}
inputs = [mx.sym.var(n) for n in inputs_ext]
# ctx = mx.gpu(2)
ctx = [mx.gpu(int(i)) for i in "1,2,3,4,5,6,7".split(',') if i.strip()]

utils.log_init()

data_iter = ds.load_imagenet_rec(batch_size, input_size)


def data_iter_func():
    data = data_iter.next()
    return data.data[0], data.label[0]


data, _ = data_iter_func()

sym_file, param_file = load_fname("")
net1 = utils.load_model(sym_file, param_file, inputs, ctx=ctx)
acc_top1 = mx.metric.Accuracy()
acc_top5 = mx.metric.TopKAccuracy(5)
acc_top1.reset()
acc_top5.reset()
コード例 #6
0
def test_sym_pass(batch_size=10, iter_num=10, quantize=True):

    logger = logging.getLogger("log.test.sym.pass")

    calib_ctx = mx.gpu(2)
    ctx = [mx.gpu(int(i)) for i in "1,2,3,4".split(',') if i.strip()]
    input_size = 299
    version = "v3"
    h, w = input_size, input_size
    inputs_ext = {
        'data': {
            'shape': (batch_size, 3, h, w),
        }
    }
    inputs = [mx.sym.var(name) for name in inputs_ext]

    logger.info("load dataset, symbol and parameters")
    data_iter = ds.load_imagenet_rec(batch_size, input_size)

    def data_iter_func():
        data = data_iter.next()
        return data.data[0], data.label[0]

    net1 = utils.load_model(*load_fname(version), inputs, ctx=ctx)
    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)
    acc_top1.reset()
    acc_top5.reset()

    def inception_v3(data, label):
        data = gluon.utils.split_and_load(data,
                                          ctx_list=ctx,
                                          batch_axis=0,
                                          even_split=False)
        res = [net1.forward(d) for d in data]
        res = nd.concatenate(res)
        acc_top1.update(label, res)
        _, top1 = acc_top1.get()
        acc_top5.update(label, res)
        _, top5 = acc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    if quantize:
        sym_file, param_file = load_fname(version)
        sym, params = mx.sym.load(sym_file), nd.load(param_file)
        sym, params = spass.sym_quant_prepare(sym, params, inputs_ext)
        data, _ = data_iter_func()
        if True:
            dump_sym, dump_params, dump_ext = load_fname(version, "mrt", True)
            mrt = _mrt.MRT(sym, params, inputs_ext)
            mrt.set_data('data', data)
            mrt.calibrate(ctx=calib_ctx)
            mrt.set_output_prec(8)
            qsym, qparams, inputs_ext = mrt.quantize()
        else:
            dump_sym, dump_params, dump_ext = load_fname(
                version, "sym.quantize", True)
            inputs_ext['data']['data'] = data
            th_dict = calib.sym_calibrate(sym,
                                          params,
                                          inputs_ext,
                                          ctx=calib_ctx)
            qsym, qparams, precs, _ = calib.sym_simulate(
                sym, params, inputs_ext, th_dict)
            qsym, qparams = calib.sym_realize(qsym, qparams, inputs_ext, precs)
        sim.save_ext(dump_ext, inputs_ext)
        nd.save(dump_params, qparams)
        open(dump_sym, "w").write(qsym.tojson())

    dump_sym, dump_params, dump_ext = load_fname(version, "mrt", True)
    (inputs_ext, ) = sim.load_ext(dump_ext)
    net2 = utils.load_model(dump_sym, dump_params, inputs, ctx=ctx)
    qacc_top1 = mx.metric.Accuracy()
    qacc_top5 = mx.metric.TopKAccuracy(5)
    qacc_top1.reset()
    qacc_top5.reset()

    def cvm_quantize(data, label):
        data = sim.load_real_data(data, 'data', inputs_ext)
        data = gluon.utils.split_and_load(data,
                                          ctx_list=ctx,
                                          batch_axis=0,
                                          even_split=False)
        res = [net2.forward(d) for d in data]
        res = nd.concatenate(res)
        qacc_top1.update(label, res)
        _, top1 = qacc_top1.get()
        qacc_top5.update(label, res)
        _, top5 = qacc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    utils.multi_validate(inception_v3,
                         data_iter_func,
                         cvm_quantize,
                         iter_num=iter_num,
                         logger=logger)
コード例 #7
0
        _, top5 = acc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    utils.multi_validate(gluon_cv,
                         data_iter_func,
                         iter_num=iter_num,
                         logger=logger)


if __name__ == '__main__':
    utils.log_init()

    # zoo.save_inception_v3()
    # zoo.save_model('inceptionv3', 1000)
    if False:
        data_iter = ds.load_imagenet_rec(4, 299)
        version = "v3"
        while True:
            dump_sym, dump_params, dump_ext = load_fname(
                version, "sym.quantize", True)
            (inputs_ext, ) = sim.load_ext(dump_ext)
            sym, params = mx.sym.load(dump_sym), nd.load(dump_params)
            data = data_iter.next().data[0]
            data = sim.load_real_data(data, 'data', inputs_ext)
            inputs_ext['data']['data'] = data
            spass.sym_dump_ops(sym,
                               params,
                               inputs_ext,
                               datadir="/data/wlt",
                               ctx=mx.gpu(3))
        exit()
コード例 #8
0
def test_sym_pass(batch_size=10, iter_num=10, quantize=True):
    logger = logging.getLogger("log.test.sym.pass")
    calib_ctx = mx.gpu(1)
    ctx = [mx.gpu(int(i)) for i in "1,2,3,4".split(',') if i.strip()]
    inputs_ext = {
        'data': {
            'shape': (batch_size, 3, 224, 224),
        }
    }
    inputs = [mx.sym.var(name) for name in inputs_ext]

    logger.info("load dataset, symbol and parameters")
    # load dataset and iter function
    data_iter = ds.load_imagenet_rec(batch_size)

    def data_iter_func():
        data = data_iter.next()
        return data.data[0], data.label[0]

    data, _ = data_iter_func()

    # load original model for accuracy
    net1 = utils.load_model(*load_fname(version), inputs, ctx=ctx)
    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)
    acc_top1.reset()
    acc_top5.reset()

    def shufflenet(data, label):
        data = gluon.utils.split_and_load(data,
                                          ctx_list=ctx,
                                          batch_axis=0,
                                          even_split=False)
        res = [net1.forward(d) for d in data]
        res = nd.concatenate(res)
        acc_top1.update(label, res)
        _, top1 = acc_top1.get()
        acc_top5.update(label, res)
        _, top5 = acc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    if quantize:
        # load original model
        sym_fname, param_fname = load_fname(version)
        sym, params = mx.sym.load(sym_fname), nd.load(param_fname)
        sym, params = spass.sym_quant_prepare(sym, params, inputs_ext)

        # quantize process
        mrt = _mrt.MRT(sym, params, inputs_ext)  # initialize
        mrt.set_data('data', data)  # set input data
        mrt.calibrate(ctx=calib_ctx)  # calibration
        mrt.set_output_prec(8)  # set output prec, do nothing by default
        qsym, qparams, inputs_ext = mrt.quantize()  # quantization

        # dump quantized model
        dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize",
                                                     True)
        sim.save_ext(dump_ext, inputs_ext)
        nd.save(dump_params, qparams)
        open(dump_sym, "w").write(qsym.tojson())

    if False:
        # convert to cvm executor model
        inputs_ext['data']['shape'] = (1, 3, 224, 224)
        nnvm_sym, nnvm_params = spass.mxnet_to_nnvm(qsym, qparams, inputs_ext)
        spass.cvm_build(nnvm_sym, nnvm_params, inputs_ext,
                        *load_fname(version, "nnvm"))

    # load quantized model for accuracy
    dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
    (inputs_ext, ) = sim.load_ext(dump_ext)
    inputs = [mx.sym.var(n) for n in inputs_ext]
    net3 = utils.load_model(dump_sym, dump_params, inputs, ctx=ctx)

    # net3 = mx.gluon.nn.SymbolBlock(qsym, inputs)
    # utils.load_parameters(net3, qparams, ctx=ctx)
    qacc_top1 = mx.metric.Accuracy()
    qacc_top5 = mx.metric.TopKAccuracy(5)
    qacc_top1.reset()
    qacc_top5.reset()

    def cvm_quantize(data, label):
        data = sim.load_real_data(data, 'data', inputs_ext)
        data = gluon.utils.split_and_load(data,
                                          ctx_list=ctx,
                                          batch_axis=0,
                                          even_split=False)
        res = [net3.forward(d) for d in data]
        res = nd.concatenate(res)

        qacc_top1.update(label, res)
        _, top1 = qacc_top1.get()
        qacc_top5.update(label, res)
        _, top5 = qacc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    # compare accuracy between models
    utils.multi_validate(shufflenet,
                         data_iter_func,
                         cvm_quantize,
                         iter_num=iter_num,
                         logger=logger)
コード例 #9
0
def test_mx_quantize(batch_size=10, iter_num=10):
    logger = logging.getLogger("log.test.mx.quantize")

    ctx = [mx.gpu(int(i)) for i in "1,3".split(',') if i.strip()]
    inputs_ext = { 'data': {
        'shape': (batch_size, 3, 224, 224),
    }}
    inputs = [mx.sym.var(n) for n in inputs_ext]

    data_iter = ds.load_imagenet_rec(batch_size)
    def data_iter_func():
        data = data_iter.next()
        return data.data[0], data.label[0]
    data, _ = data_iter_func()

    net1 = utils.load_model(*load_fname(version), inputs, ctx=ctx)
    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)
    acc_top1.reset()
    acc_top5.reset()
    def mobilenet(data, label):
        data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0, even_split=False)
        res = [net1.forward(d) for d in data]
        res = nd.concatenate(res)
        acc_top1.update(label, res)
        _, top1 = acc_top1.get()
        acc_top5.update(label, res)
        _, top5 = acc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    calib_ctx = mx.gpu(1)
    sym_fname, param_fname = load_fname(version)
    sym, params = mx.sym.load(sym_fname), nd.load(param_fname)
    sym, params = spass.sym_quant_prepare(sym, params, inputs_ext)
    if True:
        if True:
            mrt = _mrt.MRT(sym, params, inputs_ext)
            mrt.set_data('data', data)
            mrt.calibrate()
            # [ 0.0008745864 0.03330660510427334 ] 0.6670066884888368 0.7753906
            # mrt.set_threshold("mobilenet0_dense0_weight", 0.67)
            # # [ -0.0036011334 0.054821780899052534 ] 1.100036751338784 1.4626989
            # mrt.set_threshold("mobilenet0_conv24_batchnorm24_fwd_weight", 1.1)
            # # [ 0.013243316 1.7543557133786065 ] 70.18747185088569 94.66275
            # mrt.set_threshold("mobilenet0_conv23_batchnorm23_fwd_weight", 35.10)
            # # [ -0.0016149869 0.05713169649243355 ] 1.1442489167675376 1.7122083
            # mrt.set_threshold("mobilenet0_conv20_batchnorm20_fwd_weight", 1.144)
            # # [ -0.0015804865 0.04523811489343643 ] 0.9063427844084799 1.0745146
            # mrt.set_threshold("mobilenet0_conv16_batchnorm16_fwd_weight", 0.90)
            # # [ 0.4315614 2.447332109723772 ] 49.37820360490254 63.959927
            # mrt.set_threshold("mobilenet0_conv2_batchnorm2_fwd", 49.37)
            # # [ 0.9770754 1.3392452512468611 ] 27.761980422905516 40.729546
            # mrt.set_threshold("mobilenet0_relu2_fwd", 27.76)
            # [ 1.0975745 1.0489919010632773 ] 22.077412493692915 23.784576
            # mrt.set_threshold("mobilenet0_relu4_fwd", 22.08)
            # # [ 0.9885562 2.360489403014386 ] 48.19834426651407 69.22121
            # mrt.set_threshold("mobilenet0_conv5_batchnorm5_fwd", 48.2)
            # # [ 0.7895588 1.0544661745870065 ] 21.878882319617176 30.95745
            # mrt.set_threshold("mobilenet0_relu17_fwd", 21.88)
            # # [ 0.8717863 1.0887600296120434 ] 22.646986888608513 28.265652
            # mrt.set_threshold("mobilenet0_relu19_fwd", 22.65)
            # # [ 0.35124516 0.6501711574631898 ] 13.354668314135012 20.770807
            # mrt.set_threshold("mobilenet0_relu20_fwd", 13.35)
            # # [ 0.9378179 1.110470714216975 ] 23.147232155910086 27.886068
            # mrt.set_threshold("mobilenet0_relu21_fwd", 23.15)
            # # [ 0.36263302 0.6352599878026505 ] 13.067832775738754 17.18809
            # mrt.set_threshold("mobilenet0_relu22_fwd", 13.07)
            # # [ 0.19875833 0.49999100821358816 ] 10.198578498193196 16.625143
            # mrt.set_threshold("mobilenet0_relu24_fwd", 10.2)
            # # [ 0.32357717 1.6308352606637138 ] 65.55698759215218 75.84912
            # mrt.set_threshold("mobilenet0_conv25_batchnorm25_fwd", 32.94)
            # # [ 0.36793178 1.512995992388044 ] 30.62785163096019 49.464615
            # mrt.set_threshold("mobilenet0_relu26_fwd", 30.63)
            # # [ 18.028658 38.61970520019531 ] 790.4227619171143 805.51886
            # mrt.set_threshold("sum0", 790.423)
            mrt.set_output_prec(8)
            qsym, qparams, inputs_ext = mrt.quantize()
        else:
            inputs_ext['data']['data'] = data
            th_dict = calib.sym_calibrate(sym, params, inputs_ext, ctx=calib_ctx)
            qsym, qparams, precs, _ = calib.sym_simulate(sym, params, inputs_ext, th_dict)
            qsym, qparams = calib.sym_realize(qsym, qparams, inputs_ext, precs)
        dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
        sim.save_ext(dump_ext, inputs_ext)
        nd.save(dump_params, qparams)
        open(dump_sym, "w").write(qsym.tojson())

        dump_sym, dump_params = load_fname(version, "nnvm.compile")
        nnvm_sym, nnvm_params = spass.mxnet_to_nnvm(qsym, qparams, inputs_ext)
        spass.cvm_build(nnvm_sym, nnvm_params, inputs_ext, dump_sym, dump_params)

    dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
    (inputs_ext,) = sim.load_ext(dump_ext)
    net2 = utils.load_model(dump_sym, dump_params, inputs, ctx=ctx)
    qacc_top1 = mx.metric.Accuracy()
    qacc_top5 = mx.metric.TopKAccuracy(5)
    qacc_top1.reset()
    qacc_top5.reset()
    def cvm_quantize(data, label):
        data = sim.load_real_data(data, 'data', inputs_ext)
        data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0, even_split=False)
        res = [net2.forward(d) for d in data]
        res = nd.concatenate(res)
        qacc_top1.update(label, res)
        _, top1 = qacc_top1.get()
        qacc_top5.update(label, res)
        _, top5 = qacc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    utils.multi_validate(mobilenet, data_iter_func,
            cvm_quantize,
            iter_num=iter_num, logger=logger)
コード例 #10
0
def test_sym_pass(batch_size=10, iter_num=10):
    logger = logging.getLogger("log.test.sym.pass")

    calib_ctx = mx.gpu(0)
    ctx = [mx.gpu(int(i)) for i in "1,2,3,4".split(',') if i.strip()]
    inputs_ext = { 'data': {
            'shape': (batch_size, 3, 224, 224),
    } }
    inputs = [mx.sym.var(name) for name in inputs_ext]

    logger.info("load dataset, symbol and parameters")
    data_iter = ds.load_imagenet_rec(batch_size)
    def data_iter_func():
        data = data_iter.next()
        return data.data[0], data.label[0]
    for i in range(10):
        if i == 3:
            break
        data, _ = data_iter_func()
    data_iter.reset()

    version = "19"
    net1 = utils.load_model(*load_fname(version), inputs, ctx=ctx)
    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)
    acc_top1.reset()
    acc_top5.reset()
    def vgg(data, label):
        data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0, even_split=False)
        res = [net1.forward(d) for d in data]
        res = nd.concatenate(res)
        acc_top1.update(label, res)
        _, top1 = acc_top1.get()
        acc_top5.update(label, res)
        _, top5 = acc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    sym_fname, param_fname = load_fname(version)
    print(sym_fname, param_fname)
    exit()
    sym, params = mx.sym.load(sym_fname), nd.load(param_fname)
    sym, params = spass.sym_quant_prepare(sym, params, inputs_ext)
    if True:
        mrt = _mrt.MRT(sym, params, inputs_ext)
        mrt.set_data('data', data)
        mrt.calibrate(ctx=calib_ctx)
        mrt.set_output_prec(8)
        qsym, qparams, inputs_ext = mrt.quantize()

        dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
        sim.save_ext(dump_ext, inputs_ext)
        nd.save(dump_params, qparams)
        open(dump_sym, "w").write(qsym.tojson())

    dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
    (inputs_ext,) = sim.load_ext(dump_ext)
    net3 = utils.load_model(dump_sym, dump_params, inputs, ctx=ctx)
    qacc_top1 = mx.metric.Accuracy()
    qacc_top5 = mx.metric.TopKAccuracy(5)
    qacc_top1.reset()
    qacc_top5.reset()
    def cvm_quantize(data, label):
        data = sim.load_real_data(data, 'data', inputs_ext)
        data = gluon.utils.split_and_load(data, ctx_list=ctx, batch_axis=0, even_split=False)
        res = [net3.forward(d) for d in data]
        res = nd.concatenate(res)
        qacc_top1.update(label, res)
        _, top1 = qacc_top1.get()
        qacc_top5.update(label, res)
        _, top5 = qacc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    utils.multi_validate(vgg, data_iter_func,
            cvm_quantize,
            iter_num=iter_num, logger=logger)
コード例 #11
0
ファイル: main.py プロジェクト: neo-lin-cortex/cvm-runtime
    batch_size = qconf["batch_size"]
    pure_int8 = qconf["pure_int8"]
    calibrate_num = qconf["calibrate_num"]

    device = qconf["device"].split(":")
    ctx = mx.gpu(int(device[1])) if device[0] == "gpu" else mx.cpu()

    input_shape = cfg["input_shape"]
    shp = tuple(batch_size if s == -1 else s for s in input_shape)
    inputs_ext = { "data": {
        "shape": shp,
    } }

    dataset = cfg["dataset"]
    if dataset == "imagenet":
        data_iter = ds.load_imagenet_rec(batch_size, shp[2])
        def data_iter_func():
            data = data_iter.next()
            return data.data[0], data.label[0]
    elif dataset == "voc":
        val_data = ds.load_voc(batch_size, shp[2])
        data_iter = iter(val_data)
        def data_iter_func():
            return next(data_iter)
    elif dataset == "trec":
        data_iter = ds.load_trec(batch_size)
        def data_iter_func():
            return next(data_iter)
    elif dataset == "mnist":
        val_loader = ds.load_mnist(batch_size)
        data_iter = iter(val_loader)
コード例 #12
0
def test_sym_pass(batch_size=10, iter_num=10):
    logger = logging.getLogger("log.test.sym.pass")

    version = ""
    sym_fname, param_fname = load_fname(version)
    sym, params = mx.sym.load(sym_fname), nd.load(param_fname)
    params = {k.split(':')[1]: v for k, v in params.items()}

    calib_ctx = mx.gpu(2)
    ctx = [mx.gpu(int(i)) for i in "1,2,3,4,5,6,7".split(',') if i.strip()]
    inputs_ext = {
        'data': {
            'shape': (batch_size, 3, 224, 224),
        }
    }
    inputs = [mx.sym.var(name) for name in inputs_ext]

    logger.info("load dataset, symbol and parameters")

    order = sutils.topo_sort(sym)
    for op_head in order:
        if op_head.attr('name') == 'classifier':
            break
    sym = op_head
    net = mx.gluon.nn.SymbolBlock(sym, inputs)
    load_parameters(net, params, ctx=ctx)

    data_iter = ds.load_imagenet_rec(batch_size)

    def data_iter_func():
        data = data_iter.next()
        return data.data[0], data.label[0]

    for i in range(10):
        if i == 3:
            break
        data, _ = data_iter_func()
    data_iter.reset()

    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)
    acc_top1.reset()
    acc_top5.reset()

    def resnet(data, label):
        data = gluon.utils.split_and_load(data,
                                          ctx_list=ctx,
                                          batch_axis=0,
                                          even_split=False)
        res = [net.forward(d) for d in data]
        res = nd.concatenate(res)
        acc_top1.update(label, res)
        _, top1 = acc_top1.get()
        acc_top5.update(label, res)
        _, top5 = acc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    sym, params = spass.sym_quant_prepare(sym, params, inputs_ext)
    qsym, qparams, precs, _ = calib.sym_simulate(sym, params, inputs_ext, data,
                                                 calib_ctx)
    qsym, qparams = calib.sym_realize(qsym, qparams, inputs_ext, precs, "cvm")
    dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
    sim.save_ext(dump_ext, inputs_ext)
    nd.save(dump_params, qparams)
    open(dump_sym, "w").write(qsym.tojson())

    dump_sym, dump_params, dump_ext = load_fname(version, "sym.quantize", True)
    (inputs_ext, ) = sim.load_ext(dump_ext)
    net3 = utils.load_model(dump_sym, dump_params, inputs, ctx=ctx)
    qacc_top1 = mx.metric.Accuracy()
    qacc_top5 = mx.metric.TopKAccuracy(5)
    qacc_top1.reset()
    qacc_top5.reset()

    def cvm_quantize(data, label):
        data = sim.load_real_data(data, 'data', inputs_ext)
        data = gluon.utils.split_and_load(data,
                                          ctx_list=ctx,
                                          batch_axis=0,
                                          even_split=False)
        res = [net3.forward(d) for d in data]
        res = nd.concatenate(res)
        qacc_top1.update(label, res)
        _, top1 = qacc_top1.get()
        qacc_top5.update(label, res)
        _, top5 = qacc_top5.get()
        return "top1={:6.2%} top5={:6.2%}".format(top1, top5)

    utils.multi_validate(resnet,
                         data_iter_func,
                         cvm_quantize,
                         iter_num=iter_num,
                         logger=logger)