コード例 #1
0
ファイル: Processing.py プロジェクト: eehoeskrap/tensorrt_cpn
def crop(pose_img, person_dets):

    #  cls_dets : x1, y1, x2, y2, score
    cls_dets = np.zeros((1, 4), dtype=np.float32)
    # test_data : x, y, w, h, score
    test_data = np.zeros((1, 4), dtype=np.float32)

    test_data[:] = person_dets[:]

    bbox = np.asarray(test_data[0])
    cls_dets[0, :4] = np.array(
        [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])

    test_imgs = []
    details = []

    # cropping
    test_img, detail = Preprocessing(pose_img, test_data[0], stage='test')

    details.append(detail)

    details = np.asarray(details).astype(np.float32)

    feed = test_img

    data = [feed.transpose(0, 2, 3, 1).astype(np.float32)]

    return data, details
コード例 #2
0
        def dataiter(train_data):
            ind = 0
            while True:
                batch_data = []
                for i in range(cfg.batch_size // cfg.nr_aug):
                    ind += 1
                    if ind > len(train_data): ind %= len(train_data)
                    data = Preprocessing(train_data[i])
                    batch_data.append(data)
                ret = []

                # aggregate
                for i in range(len(batch_data[0])):
                    ret.append(np.asarray(
                        [batch_data[j][i] for j in range(len(batch_data))]))
                yield ret
コード例 #3
0
ファイル: mptest.py プロジェクト: BAIPDIW/cpn
def test_net(tester, logger, dets, det_range):
    # here we assume all boxes are pre-processed.
    nms_method = 'nms'
    nms_thresh = 1.
    min_scores = 1e-10
    min_box_size = 0.  # 8 ** 2

    all_res = []
    dump_results = []

    start_time = time.time()

    img_start = det_range[0]
    while img_start < det_range[1]:
        img_end = img_start + 1
        im_info = dets[img_start]
        while img_end < det_range[1] and dets[img_end]['image_id'] == im_info['image_id']:
            img_end += 1

        test_data = dets[img_start:img_end]
        img_start = img_end

        iter_avg_cost_time = (time.time() - start_time) / (img_end - det_range[0])
        print('ran %.ds >> << left %.ds' % (
            iter_avg_cost_time * (img_end - det_range[0]), iter_avg_cost_time * (det_range[1] - img_end)))

        all_res.append([])

        # get box detections
        cls_dets = np.zeros((len(test_data), 5), dtype=np.float32)
        for i in range(len(test_data)):
            bbox = np.asarray(test_data[i]['bbox'])
            cls_dets[i, :4] = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
            cls_dets[i, 4] = np.array(test_data[i]['score'])

        # nms and filter
        keep = np.where((cls_dets[:, 4] >= min_scores) &
                        ((cls_dets[:, 3] - cls_dets[:, 1]) * (cls_dets[:, 2] - cls_dets[:, 0]) >= min_box_size))[0]
        cls_dets = cls_dets[keep]
        if len(cls_dets) > 0:
            if nms_method == 'nms':
                keep = gpu_nms(cls_dets, nms_thresh)
            elif nms_method == 'soft':
                keep = cpu_soft_nms(np.ascontiguousarray(cls_dets, dtype=np.float32), method=2)
            else:
                assert False
        cls_dets = cls_dets[keep]
        test_data = np.asarray(test_data)[keep]

        if len(keep) == 0:
            continue

        # crop and detect keypoints
        cls_skeleton = np.zeros((len(test_data), cfg.nr_skeleton, 3))
        crops = np.zeros((len(test_data), 4))
        cfg.batch_size = 32
        batch_size = cfg.batch_size // 2
        for test_id in range(0, len(test_data), batch_size):
            start_id = test_id
            end_id = min(len(test_data), test_id + batch_size)

            test_imgs = []
            details = []
            for i in range(start_id, end_id):
                test_img, detail = Preprocessing(test_data[i], stage='test')
                test_imgs.append(test_img)
                details.append(detail)

            details = np.asarray(details)
            feed = test_imgs
            for i in range(end_id - start_id):
                ori_img = test_imgs[i][0].transpose(1, 2, 0)
                flip_img = cv2.flip(ori_img, 1)
                feed.append(flip_img.transpose(2, 0, 1)[np.newaxis, ...])
            feed = np.vstack(feed)

            res = tester.predict_one([feed.transpose(0, 2, 3, 1).astype(np.float32)])[0]
            res = res.transpose(0, 3, 1, 2)

            for i in range(end_id - start_id):
                fmp = res[end_id - start_id + i].transpose((1, 2, 0))
                fmp = cv2.flip(fmp, 1)
                fmp = list(fmp.transpose((2, 0, 1)))
                for (q, w) in cfg.symmetry:
                    fmp[q], fmp[w] = fmp[w], fmp[q]
                fmp = np.array(fmp)
                res[i] += fmp
                res[i] /= 2

            for test_image_id in range(start_id, end_id):
                r0 = res[test_image_id - start_id].copy()
                r0 /= 255.
                r0 += 0.5
                for w in range(cfg.nr_skeleton):
                    res[test_image_id - start_id, w] /= np.amax(res[test_image_id - start_id, w])
                border = 10
                dr = np.zeros((cfg.nr_skeleton, cfg.output_shape[0] + 2 * border, cfg.output_shape[1] + 2 * border))
                dr[:, border:-border, border:-border] = res[test_image_id - start_id][:cfg.nr_skeleton].copy()
                for w in range(cfg.nr_skeleton):
                    dr[w] = cv2.GaussianBlur(dr[w], (21, 21), 0)
                for w in range(cfg.nr_skeleton):
                    lb = dr[w].argmax()
                    y, x = np.unravel_index(lb, dr[w].shape)
                    dr[w, y, x] = 0
                    lb = dr[w].argmax()
                    py, px = np.unravel_index(lb, dr[w].shape)
                    y -= border
                    x -= border
                    py -= border + y
                    px -= border + x
                    ln = (px ** 2 + py ** 2) ** 0.5
                    delta = 0.25
                    if ln > 1e-3:
                        x += delta * px / ln
                        y += delta * py / ln
                    x = max(0, min(x, cfg.output_shape[1] - 1))
                    y = max(0, min(y, cfg.output_shape[0] - 1))
                    cls_skeleton[test_image_id, w, :2] = (x * 4 + 2, y * 4 + 2)
                    cls_skeleton[test_image_id, w, 2] = r0[w, int(round(y) + 1e-10), int(round(x) + 1e-10)]
                # map back to original images
                crops[test_image_id, :] = details[test_image_id - start_id, :]
                for w in range(cfg.nr_skeleton):
                    cls_skeleton[test_image_id, w, 0] = cls_skeleton[test_image_id, w, 0] / cfg.data_shape[1] * (
                    crops[test_image_id][2] - crops[test_image_id][0]) + crops[test_image_id][0]
                    cls_skeleton[test_image_id, w, 1] = cls_skeleton[test_image_id, w, 1] / cfg.data_shape[0] * (
                    crops[test_image_id][3] - crops[test_image_id][1]) + crops[test_image_id][1]
        all_res[-1] = [cls_skeleton.copy(), cls_dets.copy()]

        cls_partsco = cls_skeleton[:, :, 2].copy().reshape(-1, cfg.nr_skeleton)
        cls_skeleton[:, :, 2] = 1
        cls_scores = cls_dets[:, -1].copy()

        # rescore
        cls_dets[:, -1] = cls_scores * cls_partsco.mean(axis=1)
        cls_skeleton = np.concatenate(
            [cls_skeleton.reshape(-1, cfg.nr_skeleton * 3), (cls_scores * cls_partsco.mean(axis=1))[:, np.newaxis]],
            axis=1)
        for i in range(len(cls_skeleton)):
            result = dict(image_id=im_info['image_id'], category_id=1, score=float(round(cls_skeleton[i][-1], 4)),
                          keypoints=cls_skeleton[i][:-1].round(3).tolist())
            dump_results.append(result)

    return all_res, dump_results
コード例 #4
0
def test_net(tester, logger, dets, det_range):
    # here we assume all boxes are pre-processed.
    all_res = []
    dump_results = []

    start_time = time.time()

    img_start = det_range[0]
    while img_start < det_range[1]:
        img_end = img_start + 1
        im_info = dets[img_start]
        while img_end < det_range[1] and dets[img_end]['imgpath'] == im_info[
                'imgpath']:
            img_end += 1

        test_data = dets[img_start:img_end]
        img_start = img_end

        iter_avg_cost_time = (time.time() - start_time) / (img_end -
                                                           det_range[0])
        print('ran %.ds >> << left %.ds' %
              (iter_avg_cost_time *
               (img_end - det_range[0]), iter_avg_cost_time *
               (det_range[1] - img_end)))

        all_res.append([])

        #test_data = np.asarray(test_data)

        # crop and detect keypoints
        cls_skeleton = np.zeros((len(test_data), cfg.nr_skeleton, 3))
        crops = np.zeros((len(test_data), 4))
        cfg.batch_size = 8
        batch_size = cfg.batch_size // 2
        for test_id in range(0, len(test_data), batch_size):
            start_id = test_id
            end_id = min(len(test_data), test_id + batch_size)

            test_imgs = []
            details = []
            for i in range(start_id, end_id):
                test_img, detail = Preprocessing(test_data[i], stage='test')
                test_imgs.append(test_img)
                details.append(detail)

            details = np.asarray(details)
            feed = test_imgs
            for i in range(end_id - start_id):
                ori_img = test_imgs[i][0].transpose(1, 2, 0)
                flip_img = cv2.flip(ori_img, 1)
                feed.append(flip_img.transpose(2, 0, 1)[np.newaxis, ...])
            feed = np.vstack(feed)

            res = tester.predict_one(
                [feed.transpose(0, 2, 3, 1).astype(np.float32)])[0]
            res = res[0]
            res = res.transpose(0, 3, 1, 2)

            for i in range(end_id - start_id):
                fmp = res[end_id - start_id + i].transpose((1, 2, 0))
                fmp = cv2.flip(fmp, 1)
                fmp = list(fmp.transpose((2, 0, 1)))
                for (q, w) in cfg.symmetry:
                    fmp[q], fmp[w] = fmp[w], fmp[q]
                fmp = np.array(fmp)
                res[i] += fmp
                res[i] /= 2

            for test_image_id in range(start_id, end_id):
                r0 = res[test_image_id - start_id].copy()
                r0 /= 255.
                r0 += 0.5
                for w in range(cfg.nr_skeleton):
                    res[test_image_id - start_id,
                        w] /= np.amax(res[test_image_id - start_id, w])
                border = 10
                dr = np.zeros(
                    (cfg.nr_skeleton, cfg.output_shape[0] + 2 * border,
                     cfg.output_shape[1] + 2 * border))
                dr[:, border:-border,
                   border:-border] = res[test_image_id -
                                         start_id][:cfg.nr_skeleton].copy()
                for w in range(cfg.nr_skeleton):
                    dr[w] = cv2.GaussianBlur(dr[w], (21, 21), 0)
                for w in range(cfg.nr_skeleton):
                    lb = dr[w].argmax()
                    y, x = np.unravel_index(lb, dr[w].shape)
                    dr[w, y, x] = 0
                    lb = dr[w].argmax()
                    py, px = np.unravel_index(lb, dr[w].shape)
                    y -= border
                    x -= border
                    py -= border + y
                    px -= border + x
                    ln = (px**2 + py**2)**0.5
                    delta = 0.25
                    if ln > 1e-3:
                        x += delta * px / ln
                        y += delta * py / ln
                    x = max(0, min(x, cfg.output_shape[1] - 1))
                    y = max(0, min(y, cfg.output_shape[0] - 1))
                    cls_skeleton[test_image_id, w, :2] = (x * 4 + 2, y * 4 + 2)
                    cls_skeleton[test_image_id, w,
                                 2] = r0[w,
                                         int(round(y) + 1e-10),
                                         int(round(x) + 1e-10)]
                # map back to original images
                crops[test_image_id, :] = details[test_image_id - start_id, :]
                for w in range(cfg.nr_skeleton):
                    cls_skeleton[test_image_id, w, 0] = cls_skeleton[
                        test_image_id, w, 0] / cfg.data_shape[1] * (
                            crops[test_image_id][2] -
                            crops[test_image_id][0]) + crops[test_image_id][0]
                    cls_skeleton[test_image_id, w, 1] = cls_skeleton[
                        test_image_id, w, 1] / cfg.data_shape[0] * (
                            crops[test_image_id][3] -
                            crops[test_image_id][1]) + crops[test_image_id][1]
        all_res[-1] = cls_skeleton.copy()

        #cls_partsco = cls_skeleton[:, :, 2].copy().reshape(-1, cfg.nr_skeleton)
        #cls_skeleton[:, :, 2] = 1

        # rescore
        cls_skeleton = np.concatenate(
            [cls_skeleton.reshape(-1, cfg.nr_skeleton * 3)], axis=1)
        for i in range(len(cls_skeleton)):
            result = dict(keypoints=cls_skeleton[i][:].round().tolist())
            dump_results.append(result)

    return all_res, dump_results
コード例 #5
0
ファイル: train.py プロジェクト: m-milena/brain_segmentation
def main():
    axis = 'ax1'
    # CUDA for PyTorch
    device = train_device()

    # Training dataset
    train_params = {'batch_size': 10, 'shuffle': True, 'num_workers': 4}

    data_path = './dataset/dataset_' + axis + '/train/'
    train_dataset = Dataset(data_path,
                            transform=transforms.Compose([Preprocessing()]))
    lenght = int(len(train_dataset))
    train_loader = torch.utils.data.DataLoader(train_dataset, **train_params)

    # Validation dataset
    data_path = './dataset/dataset_' + axis + '/valid/'
    valid_dataset = Dataset(data_path,
                            transform=transforms.Compose([Preprocessing()]))
    valid_params = {'batch_size': 10, 'shuffle': True, 'num_workers': 4}
    val_loader = torch.utils.data.DataLoader(valid_dataset, **valid_params)

    # Training params
    learning_rate = 1e-4
    max_epochs = 100

    # Used pretrained model and modify channels from 3 to 1
    model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch',
                           'unet',
                           in_channels=3,
                           out_channels=1,
                           init_features=32,
                           pretrained=True)
    model.encoder1.enc1conv1 = nn.Conv2d(1,
                                         32,
                                         kernel_size=(3, 3),
                                         stride=(1, 1),
                                         padding=(1, 1),
                                         bias=False)
    model.to(device)

    # Optimizer and loss function
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    dsc_loss = DiceLoss()

    # Metrics
    train_loss = AverageMeter('Training loss', ':.6f')
    val_loss = AverageMeter('Validation loss', ':.6f')
    best_loss = float('inf')
    nb_of_batches = lenght // train_params['batch_size']

    for epoch in range(max_epochs):
        val_loss.avg = 0
        train_loss.avg = 0
        if not epoch:
            logg_file = loggs.Loggs(['epoch', 'train_loss', 'val_loss'])
            model.train()
        for i, (image, label) in enumerate(train_loader):
            torch.cuda.empty_cache()
            image, label = image.to(device), label.to(device)
            optimizer.zero_grad()
            y_pred = model(image)
            loss = dsc_loss(y_pred, label)
            del y_pred
            train_loss.update(loss.item(), image.size(0))
            loss.backward()
            optimizer.step()
            loggs.training_bar(i,
                               nb_of_batches,
                               prefix='Epoch: %d/%d' % (epoch, max_epochs),
                               suffix='Loss: %.6f' % loss.item())
        print(train_loss.avg)

        with torch.no_grad():
            for i, (x_val, y_val) in enumerate(val_loader):
                x_val, y_val = x_val.to(device), y_val.to(device)
                model.eval()
                yhat = model(x_val)
                loss = dsc_loss(yhat, y_val)
                val_loss.update(loss.item(), x_val.size(0))
            print(val_loss)
            logg_file.save([epoch, train_loss.avg, val_loss.avg])

            # Save the best model with minimum validation loss
            if best_loss > val_loss.avg:
                print('Updated model with validation loss %.6f ---> %.6f' %
                      (best_loss, val_loss.avg))
                best_loss = val_loss.avg
                torch.save(model, './model_' + axis + '/best_model.pt')
コード例 #6
0
ファイル: Detector2D.py プロジェクト: cbiras/3DHPose
    def _test_net(self, dets):
        # here we assume all boxes are pre-processed.
        det_range = [0, len(dets)]
        nms_method = 'nms'
        nms_thresh = 1.
        min_scores = 0.5  # 1e-10 modified to avoid mismatch
        min_box_size = 0.  # 8 ** 2

        all_res = []
        dump_results = []

        start_time = time.time()

        img_start = det_range[0]
        while img_start < det_range[1]:
            img_end = img_start + 1
            im_info = dets[img_start]
            # toate img_id au acelasi id.
            #din cauza asta, img_end o sa fie egal cu numarul de detectii
            while img_end < det_range[1] and dets[img_end][
                    'image_id'] == im_info['image_id']:
                img_end += 1
            #practic tot
            test_data = dets[img_start:img_end]
            img_start = img_end
            all_res.append([])
            # get box detections
            #face o matrice de zero-uri cu 5 coloane si linii cate elemente sunt
            cls_dets = np.zeros((len(test_data), 5), dtype=np.float32)
            for i in range(len(test_data)):
                bbox = np.asarray(test_data[i]['bbox'])
                #banuiesc ca asta e formula cu care salveaza bbox, e cam dubioasa
                cls_dets[i, :4] = np.array(
                    [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
                #pe ultima pozitie e scorul de incredere
                cls_dets[i, 4] = np.array(test_data[i]['score'])

            # nms and filter
            keep = np.where((cls_dets[:, 4] >= min_scores) & (
                (cls_dets[:, 3] - cls_dets[:, 1]) *
                (cls_dets[:, 2] - cls_dets[:, 0]) >= min_box_size))[0]
            #se pastreaza doar alea peste treshold
            cls_dets = cls_dets[keep]
            if len(cls_dets) > 0:
                if nms_method == 'nms':
                    keep = gpu_nms(cls_dets, nms_thresh)
                elif nms_method == 'soft':
                    keep = cpu_soft_nms(np.ascontiguousarray(cls_dets,
                                                             dtype=np.float32),
                                        method=2)
                else:
                    assert False
            cls_dets = cls_dets[keep]
            test_data = np.asarray(test_data)[keep]

            if len(keep) == 0:
                continue

            # crop and detect keypoints
            #cls_skeleton o sa fie un cub
            cls_skeleton = np.zeros((len(test_data), cfg.nr_skeleton, 3))
            #crops o sa fie o matrice cu len linii si 4 coloane
            crops = np.zeros((len(test_data), 4))
            cfg.batch_size = 32
            #practic batch-sizeul o sa fie 16. faza e ca as putea sa fac asta foarte mic, dar nu va afecta cu nimic, ca problema nu e aici
            batch_size = cfg.batch_size // 2
            #de la 0 la len, din 16 in 16
            for test_id in range(0, len(test_data), batch_size):
                start_id = test_id
                #end-ul va fi mereu inceput+batch size
                end_id = min(len(test_data), test_id + batch_size)

                test_imgs = []
                details = []
                #spre exemplu e de la 0 la 16, sau de la 1 la 17
                for i in range(start_id, end_id):
                    #merg in preprocessing sa vad ke se intampla. se trimite o imagine si stageul de test
                    #am venit din Preprocessing. Se primeste iamginea normalizata si cu ceva border, si in detail sunt dimensiuni
                    test_img, detail = Preprocessing(test_data[i],
                                                     stage='test')
                    #in test_imgs vor fi imaginile cropuite ale persoanelor din bounding boxes
                    test_imgs.append(test_img)
                    details.append(detail)

                details = np.asarray(details)
                feed = test_imgs
                for i in range(end_id - start_id):
                    #se transpun imaginile, nu stiu cum
                    ori_img = test_imgs[i][0].transpose(1, 2, 0)
                    flip_img = cv2.flip(ori_img, 1)
                    feed.append(flip_img.transpose(2, 0, 1)[np.newaxis, ...])
                feed = np.vstack(feed)

                #in feed ar trebui sa fie imaginile procesate si imaginile flipuite si transpuse. e un array cu imaginile astea din batchul actual
                #merg sa vad ce face predict_one. primeste imaginile transpuse inca o data din batchul actual procesate
                res = self.tester.predict_one(
                    [feed.transpose(0, 2, 3, 1).astype(np.float32)])[0]
                # from IPython import embed; embed()
                res = res.transpose(0, 3, 1, 2)

                #practic nu imaginile specifice, ci de la 0 la diferenta, care probabil e 16 mereu, adica range(16)
                for i in range(end_id - start_id):
                    #ia o imagine de genul 16+i, care i e de la 0 la 16 si o transpune din nou.
                    fmp = res[end_id - start_id + i].transpose((1, 2, 0))
                    fmp = cv2.flip(fmp, 1)
                    fmp = list(fmp.transpose((2, 0, 1)))
                    #inverseaza pixeli poate
                    for (q, w) in cfg.symmetry:
                        fmp[q], fmp[w] = fmp[w], fmp[q]
                    fmp = np.array(fmp)
                    #aici chiar nu mai inteleg ce face, de ce ia o imagine din primul batch si aduna la ea imaginea fmp care e mereu din al doilea batch
                    res[i] += fmp
                    res[i] /= 2

                heatmaps = []
                for test_image_id in range(start_id, end_id):
                    #din nou, r0 va fi mereu din primele 16
                    r0 = res[test_image_id - start_id].copy()
                    #o normalizeaza cu std si mean
                    r0 /= 255.
                    r0 += 0.5
                    #cfg.nr_skeleton e 17
                    for w in range(cfg.nr_skeleton):
                        #din aceasta linie trag concluzia ca res e un cub. si imparte acest array cu maximul din el
                        res[test_image_id - start_id,
                            w] /= np.amax(res[test_image_id - start_id, w])
                    border = 10
                    #in dr pune toate pozele din primul batch
                    dr = np.zeros(
                        (cfg.nr_skeleton, cfg.output_shape[0] + 2 * border,
                         cfg.output_shape[1] + 2 * border))
                    dr[:, border:-border, border:-border] = res[
                        test_image_id - start_id][:cfg.nr_skeleton].copy()
                    # TODO: try to use those with out gaussian
                    for w in range(cfg.nr_skeleton):
                        #blureaza imaginile
                        dr[w] = cv2.GaussianBlur(dr[w], (21, 21), 0)
                        # dr[w] = cv2.GaussianBlur ( dr[w], (1, 1), 0 ) # Will working on it.
                    raw_heatmaps = list(dr[:, border:-border,
                                           border:-border].copy())
                    #de la 0 la 17
                    for w in range(cfg.nr_skeleton):
                        #indicele celei mai mari valori din dr[w]
                        lb = dr[w].argmax()
                        #nu prea inteleg aceasta functie, ideea e ca transforma indicii din lb in 2 array-uri de coordonate
                        y, x = np.unravel_index(lb, dr[w].shape)
                        #pune pe 0 astea ce au fost deja procesate
                        dr[w, y, x] = 0
                        #mai jos sunt niste operatii matematice pe care nu o sa le pricep acum, sunt doar calcule pentru a obtine coordonatele corecte de pe heatmaps
                        lb = dr[w].argmax()
                        py, px = np.unravel_index(lb, dr[w].shape)
                        y -= border
                        x -= border
                        py -= border + y
                        px -= border + x
                        ln = (px**2 + py**2)**0.5
                        delta = 0.25
                        if ln > 1e-3:
                            x += delta * px / ln
                            y += delta * py / ln
                        x = max(0, min(x, cfg.output_shape[1] - 1))
                        y = max(0, min(y, cfg.output_shape[0] - 1))
                        cls_skeleton[test_image_id,
                                     w, :2] = (x * 4 + 2, y * 4 + 2)
                        cls_skeleton[test_image_id, w,
                                     2] = r0[w,
                                             int(round(y) + 1e-10),
                                             int(round(x) + 1e-10)]
                    # map back to original images
                    #practic in crops sunt dimensiunile originale ale imaginilor care erau si in details
                    crops[test_image_id, :] = details[test_image_id -
                                                      start_id, :]
                    length = crops[test_image_id][2] - crops[test_image_id][0]
                    width = crops[test_image_id][3] - crops[test_image_id][1]
                    #cred ca e orientarea salvata in astea 2
                    l_ori = raw_heatmaps[0].shape[0]
                    w_ori = raw_heatmaps[0].shape[1]

                    def test_for_loop(raw_heatmaps, order=3):
                        heatmaps_this = copy.deepcopy(raw_heatmaps)
                        for w in range(cfg.nr_skeleton):
                            heatmaps_this[
                                w] = scipy.ndimage.interpolation.zoom(
                                    raw_heatmaps[w],
                                    (width / l_ori, length / w_ori),
                                    order=order)
                            heatmaps_this[w][heatmaps_this[w] <= 0] = 10e-6
                        zoomed_heatmaps = np.array(heatmaps_this)
                        return zoomed_heatmaps

                    def test_my(raw_heatmaps, order=3):
                        origin_heatmap = np.array(raw_heatmaps)
                        zoomed_heatmaps = scipy.ndimage.interpolation.zoom(
                            origin_heatmap, (1, width / l_ori, length / w_ori),
                            order=order)
                        zoomed_heatmaps[zoomed_heatmaps <= 0] = 10e-6
                        return zoomed_heatmaps

                    # origin_heatmap = np.array ( raw_heatmaps )
                    zoomed_heatmaps = np.empty(
                        (len(raw_heatmaps), int(width), int(length)))
                    for zoom_id, heatmap_i in enumerate(raw_heatmaps):
                        zoomed_heatmaps[
                            zoom_id] = scipy.ndimage.interpolation.zoom(
                                heatmap_i, (width / l_ori, length / w_ori),
                                order=3)
                    # zoomed_heatmaps = np.array ( raw_heatmaps )
                    zoomed_heatmaps[zoomed_heatmaps <= 0] = 10e-6
                    # orinial_heatmaps = np.zeros((cfg.nr_skeleton, ori_width, ori_length))
                    # orinial_heatmaps[:, int(crops[test_image_id][1]):int(crops[test_image_id][3]), int(crops[test_image_id][0]):int(crops[test_image_id][2])] = heatmaps_this
                    # orinial_heatmaps[orinial_heatmaps <= 0] = 10**-6
                    heatmaps.append(zoomed_heatmaps)
                    for w in range(cfg.nr_skeleton):
                        cls_skeleton[test_image_id, w, 0] = cls_skeleton[
                            test_image_id, w, 0] / cfg.data_shape[1] * (
                                crops[test_image_id][2] - crops[test_image_id]
                                [0]) + crops[test_image_id][0]
                        cls_skeleton[test_image_id, w, 1] = cls_skeleton[
                            test_image_id, w, 1] / cfg.data_shape[0] * (
                                crops[test_image_id][3] - crops[test_image_id]
                                [1]) + crops[test_image_id][1]
            all_res[-1] = [cls_skeleton.copy(), cls_dets.copy()]

            cls_partsco = cls_skeleton[:, :,
                                       2].copy().reshape(-1, cfg.nr_skeleton)
            cls_skeleton[:, :, 2] = 1
            cls_scores = cls_dets[:, -1].copy()

            # rescore
            cls_dets[:, -1] = cls_scores * cls_partsco.mean(axis=1)
            cls_skeleton = np.concatenate([
                cls_skeleton.reshape(-1, cfg.nr_skeleton * 3),
                (cls_scores * cls_partsco.mean(axis=1))[:, np.newaxis]
            ],
                                          axis=1)
            for i in range(len(cls_skeleton)):
                result = dict(image_id=im_info['image_id'],
                              category_id=1,
                              score=float(round(cls_skeleton[i][-1], 4)),
                              keypoints=cls_skeleton[i][:-1].round(3).tolist(),
                              bbox=dets[i]['bbox'],
                              heatmaps=heatmaps[i],
                              crops=crops[i])
                dump_results.append(result)
            if self.show_image:
                import pdb
                pdb.set_trace()
                dbg_im = dets[0][
                    'data']  # Since all detection are based on the same image
                from utils.visualize import visualize
                visualize(dbg_im,
                          keypoints=[i['keypoints'] for i in dump_results],
                          det_boxes=cls_dets)
                # import pdb; pdb.set_trace ()
        # return all_res, dump_results
        return dump_results
コード例 #7
0
def main():
    device = train_device()

    # Test dataset
    test_params = {'batch_size': 5, 'shuffle': False, 'num_workers': 4}

    data_path = './dataset/test/'
    kod = [f for f in os.listdir(data_path)]
    samples = [data_path + f + '/ax1/' for f in os.listdir(data_path)]
    info_file = [data_path + f + '/info.txt' for f in os.listdir(data_path)]

    # Load model
    model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch',
                           'unet',
                           in_channels=3,
                           out_channels=1,
                           init_features=32,
                           pretrained=True)
    model.encoder1.enc1conv1 = nn.Conv2d(1,
                                         32,
                                         kernel_size=(3, 3),
                                         stride=(1, 1),
                                         padding=(1, 1),
                                         bias=False)
    model = torch.load('./model_ax1/best_model.pt', map_location=device)
    model.to(device)
    model.eval()

    j = 0
    # Testing
    for sample in samples:
        with open(info_file[j], 'r') as f:
            info = f.read()
            info = info.replace(",", "")
            img_shape = list(map(int, (info.split()[-3:])))

        test_dataset = Dataset(sample,
                               is_test=True,
                               transform=transforms.Compose([Preprocessing()]))
        test_loader = torch.utils.data.DataLoader(test_dataset, **test_params)
        result = np.zeros(tuple(img_shape))
        affine = return_affine(kod[j])
        k = 0
        for i, (x_test) in enumerate(test_loader):
            torch.cuda.empty_cache()
            x_test = x_test.to(device)
            outputs = model(x_test)
            l = 0
            for out in outputs:
                key = ord('a')
                img = np.array(np.squeeze((out.cpu().detach().numpy())),
                               np.uint8)
                img2 = np.array(
                    np.squeeze(255 * (x_test[l].cpu().detach().numpy())),
                    np.uint8)
                img = crop(img, (img_shape[0], img_shape[1]))
                img2 = crop(img2, (img_shape[0], img_shape[1]))
                print(max(img.flatten()))
                img = np.flip(img, axis=0)
                img = np.array(np.where(img < 0.5, 0, 1), np.float32)
                print(max(img.flatten()))
                result[:, :, k] = img

                l += 1
                k += 1

        save_labels(result, affine,
                    Path('./predictions2_ax1/' + kod[j] + '.nii.gz'))

        j += 1
コード例 #8
0
ファイル: train.py プロジェクト: m-milena/unet_pytorch
def main():
    # CUDA for PyTorch
    use_cuda = torch.cuda.is_available()
    device = torch.device('cuda:0' if use_cuda else 'cpu')
    torch.backends.cudnn.benchmark = True

    train_params = {'batch_size': 50, 'shuffle': True, 'num_workers': 4}
    valid_params = {'batch_size': 100, 'shuffle': True, 'num_workers': 4}

    # Load dataset
    data_path = '../generated_data/'
    my_dataset = Dataset(data_path,
                         transform=transforms.Compose([Preprocessing()]))

    lengths = [int(len(my_dataset) * 0.8), int(len(my_dataset) * 0.2)]
    train_dataset, val_dataset = random_split(my_dataset, lengths)

    train_loader = torch.utils.data.DataLoader(train_dataset, **train_params)
    val_loader = torch.utils.data.DataLoader(val_dataset, **valid_params)

    # Training params
    learning_rate = 1e-3
    max_epochs = 4

    # Model
    model = unet.ResUNet(2, 1, n_size=16)
    model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    train_loss = AverageMeter('Training loss', ':.6f')
    val_loss = AverageMeter('Validation loss', ':.6f')
    best_loss = float('inf')

    nb_of_batches = lengths[0] // train_params['batch_size']
    # Training loop
    for epoch in range(max_epochs):
        if not epoch:
            logg_file = loggs.Loggs(['epoch', 'train_loss', 'val_loss'])
        for i, (x_batch, y_labels) in enumerate(train_loader):
            x_batch, y_labels = x_batch.to(device), y_labels.to(device)
            y_pred = model(x_batch)
            #y_pred = torch.round(y_pred[0])
            loss = dice_loss(y_pred, y_labels)
            train_loss.update(loss.item(), x_batch.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            loggs.training_bar(i,
                               nb_of_batches,
                               prefix='Epoch: %d/%d' % (epoch, max_epochs),
                               suffix='Loss: %.6f' % loss.item())
        print(train_loss)

        with torch.no_grad():
            for i, (x_val, y_val) in enumerate(val_loader):
                x_val, y_val = x_val.to(device), y_val.to(device)
                model.eval()
                yhat = model(x_val)
                loss = dice_loss(yhat, y_val)
                val_loss.update(loss.item(), x_val.size(0))
                if i == 10: break
            print(val_loss)
            logg_file.save([epoch, train_loss.avg, val_loss.avg])

            # Save the best model with minimum validation loss
            if best_loss > val_loss.avg:
                print('Updated model with validation loss %.6f ---> %.6f' %
                      (best_loss, val_loss.avg))
                best_loss = val_loss.avg
                torch.save(model, 'best_model.pt')