コード例 #1
0
ファイル: infogan.py プロジェクト: Noxxel/floter
        if len(states) >= 1:
            load_state = os.path.join(opath, states[-1])
            if os.path.isfile(load_state):
                tmp_load = torch.load(load_state)
                discriminator.load_state_dict(tmp_load["idis"])
                generator.load_state_dict(tmp_load["igen"])
                lossD = tmp_load["lossD"]
                lossG = tmp_load["lossG"]
                lossI = tmp_load["lossI"]
                print("successfully loaded {}".format(load_state))
                starting_epoch = int(states[-1][-6:-3]) + 1
                print("continueing with epoch {}".format(starting_epoch))
                del tmp_load

    # Configure data loaders
    Mset = SoundfileDataset(ipath=ipath, out_type="gan")
    assert Mset
    Mloader = torch.utils.data.DataLoader(Mset,
                                          batch_size=opt.batch_size,
                                          shuffle=True,
                                          num_workers=int(opt.workers))

    Iset = DatasetCust(opt.dataroot,
                       transform=transforms.Compose([
                           transforms.ToPILImage(),
                           transforms.Resize((opt.image_size, opt.image_size)),
                           transforms.ToTensor(),
                           transforms.Normalize((0.5, 0.5, 0.5),
                                                (0.5, 0.5, 0.5)),
                       ]))
    assert Iset
コード例 #2
0
from dataset import SoundfileDataset

fsize = 1024
ssize = 512
num_epochs  = 15
batch_s     = 2
seg_s       = 2
learn_r     = 0.001
log_percent = 0.25
CUDA_ON     = True
SHUFFLE_ON  = False

DATA_PATH   = "./all_metadata.p"

y, sr = librosa.load("/home/flo/IAML/fma_small/099/099214.mp3", duration=30.0, mono=True) #id 4470
dataset = SoundfileDataset(path=DATA_PATH, seg_size=seg_s, hotvec=False, cut_data=True, verbose=False, out_type='entr')

print(dataset.data[6964])

print(dataset.data[6965])

print(y.shape)

def calc_entropy(song):
    fsize = 1024
    ssize = 512
    
    lenY = song.shape[0]
    lenCut = lenY-(lenY%ssize)
    if(lenY < fsize): print("WTF DUDE!")
    
コード例 #3
0
_CB = "\033[36;1m"

_XX = "\033[0m"

# CONST:
IPATH = "../melsset.ln"
BATCH_SIZE = 64
N_PROC = 16
CUDA_DEVICE = 0  #NOCUDA
MEL_SEG_SIZE = 512  # ~25sec
LOG_COUNT = 100

print("### creating dataset ###")
dset = SoundfileDataset("../all_metadata.p",
                        IPATH,
                        seg_size=30,
                        out_type='pre_mel',
                        mel_seg_size=MEL_SEG_SIZE,
                        verbose=True)
print("### splitting dataset ###")
tset, vset = dset.get_split(sampler=False)
print("### initializing dataloader ###")
tloader = DataLoader(tset,
                     batch_size=BATCH_SIZE,
                     shuffle=True,
                     num_workers=N_PROC,
                     drop_last=True)
vloader = DataLoader(vset,
                     batch_size=BATCH_SIZE,
                     shuffle=False,
                     num_workers=N_PROC,
                     drop_last=True)
コード例 #4
0
ファイル: eval_model.py プロジェクト: Noxxel/floter
n_mels = 128
n_time_steps = 1800
NORMALIZE = True
batch_size = 1
num_workers = 1
n_layers = 2

datapath = "./mels_set_f{}_h{}_b{}".format(n_fft, hop_length, n_mels)
modelpath = "./lstm_f{}_h{}_b{}".format(n_fft, hop_length, n_mels)
modelName = "lstm_99.nn"

device = "cuda"

dset = SoundfileDataset("./all_metadata.p",
                        ipath=datapath,
                        out_type="mel",
                        normalize=NORMALIZE,
                        n_time_steps=n_time_steps)

tset, vset = dset.get_split(sampler=False)

TLoader = DataLoader(tset,
                     batch_size=batch_size,
                     shuffle=False,
                     drop_last=False,
                     num_workers=num_workers)
VLoader = DataLoader(vset,
                     batch_size=batch_size,
                     shuffle=False,
                     drop_last=False,
                     num_workers=num_workers)
コード例 #5
0
ファイル: sample_dcnn.py プロジェクト: SinForest/iaml-project
def main():
    sys.stdout = open('output.txt', 'w')

    device = find_device()
    
    print('=> loading dataset <=')
    dataset = SoundfileDataset(METADATA_PATH, DATASET_PATH, seg_size=3, cut_data=True, out_type='sample')
    print('=> dataset loaded <=')
    model = Model(SEGMENTS, SAMPLES, dataset.n_classes)
    model = model.to(device)    
    print(model)
    optimizer = optim.SGD(model.parameters(), lr=learn_r, momentum=0.9, nesterov=True)
    #scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=0, cooldown=1, verbose=True)
    #scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.2)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.2, patience=3, cooldown=0, verbose=True)
    
    criterion = nn.CrossEntropyLoss()
        
    train_sampler, valid_sampler = dataset.get_split()
    
    train_loader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE, sampler=train_sampler, num_workers=N_PROC, drop_last=True)
    validation_loader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE, sampler=valid_sampler, num_workers=N_PROC, drop_last=True)
        
   
    print('=> begin training <=')
    for epoch in range(0, num_epochs):
        #scheduler.step()
        #current_lr = scheduler.get_lr()
        #tqdm.write(f"learning rate for next epoch: {current_lr:.10f}")
        print(f'training epoch {epoch}')
        # train
        running_loss = 0.0
        abs_prec = 0

        model.train(True)
        
        with torch.set_grad_enabled(True):
            for X, y in tqdm(train_loader, desc=f'training epoch {epoch}'):
                
            
                
                X = X.to(device)
                y = y.to(device)
                pred = model(X)
                loss = criterion(pred, y.long())
                optimizer.zero_grad()
    
                loss.backward()
                optimizer.step()
                running_loss += loss.data
                abs_prec += (pred.max(1)[1] == y).sum().item()
        

        prec = abs_prec / (len(train_loader) * BATCH_SIZE)
        tqdm.write(f"train precision: {prec*100:.2f}%")
        
        # validate
        running_loss = 0.0
        abs_prec = 0
        model.train(False)
        with torch.set_grad_enabled(False):
            for X, y in tqdm(validation_loader, desc=f'validation epoch {epoch}'):
                
                X = X.to(device)
                y = y.to(device)
                pred = model(X)
                loss = criterion(pred, y.long())
                optimizer.zero_grad()
                running_loss += loss.data
                abs_prec += (pred.max(1)[1] == y).sum().item()
        


        prec = abs_prec / (len(validation_loader) * BATCH_SIZE)
        tqdm.write(f"validation precision: {prec*100:.2f}%")
        #tqdm.write(f"validation running loss: {running_loss:.4f}%")
        scheduler.step(running_loss)

        torch.save(model, f"./model_E{epoch}_P{int(prec * 1000)}.t")
コード例 #6
0
    print("Random Seed: ", opt.manualSeed)
    random.seed(opt.manualSeed)
    torch.manual_seed(opt.manualSeed)

    cudnn.benchmark = True

    if torch.cuda.is_available() and not opt.cuda:
        print(
            "WARNING: You have a CUDA device, so you should probably run with --cuda"
        )

    # dataloaders
    Mset = None
    if opt.conv:
        Mset = SoundfileDataset(ipath=ipath,
                                out_type='cgan',
                                n_time_steps=n_time_steps)
    else:
        Mset = SoundfileDataset(ipath=ipath, out_type="gan")
    assert Mset

    dataset = DatasetCust(opt.dataroot,
                          transform=transforms.Compose([
                              transforms.ToPILImage(),
                              transforms.Resize(
                                  (opt.image_size, opt.image_size)),
                              transforms.ToTensor(),
                              transforms.Normalize((0.5, 0.5, 0.5),
                                                   (0.5, 0.5, 0.5)),
                          ]))
    nc = 3
コード例 #7
0
ファイル: AE_any.py プロジェクト: Noxxel/floter
    log_intervall = 200
    # ipath = "./mels_set_f8820_h735_b256"
    ipath = "./mels_set_f{}_h{}_b{}".format(n_fft, hop_length, n_mels)
    statepath = os.path.join(
        os.path.join("./out", opt.opath),
        "ae_n{}_b{}_{}".format(opt.n_fft, opt.n_mels, middle_size))
    print('final output-path: {}'.format(statepath))

    os.makedirs(statepath, exist_ok=True)

    # log parameters
    log_file = open(os.path.join(statepath, "params.txt"), "w")
    log_file.write(str(opt))
    log_file.close()

    dset = SoundfileDataset(ipath=ipath, out_type="ae", normalize=True)

    if DEBUG:
        print('warning, debugging turnned on!')
        dset.data = dset.data[:100]

    tset, vset = dset.get_split(sampler=False, split_size=0.2)

    TLoader = DataLoader(tset,
                         batch_size=batch_size,
                         shuffle=True,
                         drop_last=True,
                         num_workers=num_workers)
    VLoader = DataLoader(vset,
                         batch_size=batch_size,
                         shuffle=False,
コード例 #8
0
ファイル: data_distri.py プロジェクト: SinForest/iaml-project
import pickle
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
from hashlib import md5
from dataset import SoundfileDataset

FILTER = False

path = './all_metadata.p'

data = SoundfileDataset(path=path)
train, valid = data.get_indices()
d = pickle.load(open(path, 'rb'))
classes = set()
for i, (key, val) in enumerate(d.items()):
    if FILTER:
        if val['track']['genre_top'] == "": continue
    classes.add(val['track']['genre_top'])
idx2lbl = dict(enumerate(classes))
lbl2idx = {v: k for k, v in idx2lbl.items()}
n_classes = len(classes)
print(n_classes)
absolute = np.zeros(n_classes)
train_occ = np.zeros(n_classes)
val_occ = np.zeros(n_classes)

for i in train:
    train_occ[data.data[i].label] += 1
train_dis = (train_occ / train_occ.sum()) * 100
print(train_occ.sum())
コード例 #9
0
ファイル: features.py プロジェクト: Noxxel/floter
DEBUG = False
LOG = False
log_intervall = 50

#datapath = "./mels_set_db"
datapath = "./mels_set_f{}_h{}_b{}".format(n_fft, hop_length, n_mels)
statepath = "./lstm_f{}_h{}_b{}_no_max".format(n_fft, hop_length, n_mels)
#statepath = "conv_small_b128"

device = "cuda"
filt_genre = None
#filt_genre = ['Experimental', 'Instrumental', 'International', 'Pop']

dset = SoundfileDataset("./all_metadata.p",
                        ipath=datapath,
                        out_type="mel",
                        normalize=NORMALIZE,
                        n_time_steps=n_time_steps,
                        filter_list=filt_genre)
if DEBUG:
    dset.data = dset.data[:2000]

tset, vset = dset.get_split(sampler=False)

TLoader = DataLoader(tset,
                     batch_size=batch_size,
                     shuffle=True,
                     drop_last=True,
                     num_workers=num_workers)
VLoader = DataLoader(vset,
                     batch_size=batch_size,
                     shuffle=False,