コード例 #1
0
    q_dir = QUESTIONS_DIR
    v_dir = VIDEOS_DIR
    labels_file = LABELS_FILE
    split_file = SPLIT_FILE

    with open(split_file, 'r') as f:
        split = json.load(f)
    train_file_ids = split['train']
    val_file_ids = split['val']

    with open(labels_file, 'r') as f:
        labels = json.load(f)

    # Initialize datasets for training and validation
    train_data = VNQADataset(q_dir=q_dir, v_dir=v_dir, filenames=train_file_ids, labels=labels)
    val_data = VNQADataset(q_dir=q_dir, v_dir=v_dir, filenames=val_file_ids, labels=labels)
    print('%d train examples, %d validation examples' % (len(train_data), len(val_data)))

    # Create DataLoader objects for training and validation sets
    train_loader = DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True,
                              num_workers=args.num_workers)
    val_loader = DataLoader(dataset=val_data, batch_size=args.batch_size, shuffle=True,
                             num_workers=args.num_workers)

    # Initialize the model
    num_classes = args.num_classes
    if args.model == 'concat2d':
        model = QConcatCNN2DLSTM(batch_size=args.batch_size,
                                 q_embedding_size=args.embed_size,
                                 nb_classes=num_classes,
コード例 #2
0
    q_dir = QUESTIONS_DIR
    v_dir = VIDEOS_DIR
    labels_file = LABELS_FILE
    split_file = SPLIT_FILE

    with open(split_file, 'r') as f:
        split = json.load(f)
    train_file_ids = split['train']
    test_file_ids = split['test']

    max_num_frames = MAX_ALLOWED_NUM_FRAMES_DROPPING
    with open(labels_file, 'r') as f:
        labels = json.load(f)

    # Initialize datasets
    train_data = VNQADataset(q_dir=q_dir, v_dir=v_dir, filenames=train_file_ids, labels=labels)
    test_data = VNQADataset(q_dir=q_dir, v_dir=v_dir, filenames=test_file_ids, labels=labels,
                            q_metadata=True)

    # Create DataLoader objects
    train_loader = DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True,
                              num_workers=args.num_workers)
    test_loader = DataLoader(dataset=test_data, batch_size=args.batch_size, shuffle=True,
                             num_workers=args.num_workers)

    # Initialize the model
    num_classes = args.num_classes
    if args.model == 'concat2d':
        model = QConcatCNN2DLSTM(batch_size=args.batch_size,
                                 q_embedding_size=args.embed_size,
                                 nb_classes=num_classes,
コード例 #3
0
if __name__ == '__main__':

    with open(SPLIT_FILE, 'r') as f:
        split = json.load(f)
    train_file_ids = split['train']
    test_file_ids = split['test']
    print('%d train examples, %d test examples' %
          (len(train_file_ids), len(test_file_ids)))

    with open(LABELS_FILE, 'r') as f:
        labels = json.load(f)

    # Initialize datasets for training and testing
    train_data = VNQADataset(q_dir=QUESTIONS_DIR,
                             v_dir=VIDEOS_DIR,
                             v_only=True,
                             filenames=train_file_ids,
                             labels=labels)
    test_data = VNQADataset(q_dir=QUESTIONS_DIR,
                            v_dir=VIDEOS_DIR,
                            v_only=True,
                            filenames=test_file_ids,
                            labels=labels)

    # Create DataLoader objects for training and test datasets
    train_loader = DataLoader(dataset=train_data,
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers)
    test_loader = DataLoader(dataset=test_data,
                             batch_size=args.batch_size,
コード例 #4
0

if __name__=='__main__':

    with open(SPLIT_FILE, 'r') as f:
        split = json.load(f)
    train_file_ids = split['train']
    val_file_ids = split['val']
    print('%d train examples, %d validation examples' % (len(train_file_ids), len(val_file_ids)))

    with open(LABELS_FILE, 'r') as f:
        labels = json.load(f)

    # Initialize datasets for training and testing
    num_classes = args.num_classes
    train_data = VNQADataset(q_dir=QUESTIONS_DIR, v_dir=VIDEOS_DIR, v_only=True,
                             num_classes=num_classes, filenames=train_file_ids, labels=labels)
    val_data = VNQADataset(q_dir=QUESTIONS_DIR, v_dir=VIDEOS_DIR, v_only=True,
                           num_classes=num_classes, filenames=val_file_ids, labels=labels)

    # Create DataLoader objects for training and test datasets
    train_loader = DataLoader(dataset=train_data,
                              batch_size=args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers)
    val_loader = DataLoader(dataset=val_data,
                            batch_size=args.batch_size,
                            shuffle=True,
                            num_workers=args.num_workers)

    # Initialize the model
    model = VideoOnlyCNN3D(nb_classes=num_classes)
コード例 #5
0
if __name__ == '__main__':

    with open(args.split_file, 'r') as f:
        split = json.load(f)
    train_file_ids = split['train']
    test_file_ids = split['test']
    print('%d test examples' % len(test_file_ids))

    with open(args.labels_file, 'r') as f:
        labels = json.load(f)
    num_classes = args.num_classes

    # Initialize datasets
    train_data = VNQADataset(q_dir=args.q_dir,
                             v_dir=args.v_dir,
                             q_only=True,
                             filenames=train_file_ids,
                             labels=labels,
                             num_classes=num_classes)
    test_data = VNQADataset(q_dir=args.q_dir,
                            v_dir=args.v_dir,
                            q_only=True,
                            filenames=test_file_ids,
                            labels=labels,
                            num_classes=num_classes)

    # Create DataLoader objects
    test_loader = DataLoader(dataset=test_data,
                             batch_size=args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers)