need_convert = False run_inference = True if os.path.isdir(os.path.join(os.getcwd(), "tflite")) is False: os.makedirs(os.path.join(os.getcwd(), "tflite")) model_path = "./tflite/converted_model.tflite" base_path = os.getcwd() base_inference_path = os.path.join(base_path, "dataset") inference_image_path = os.path.join(base_inference_path, "t10k-images-idx3-ubyte") inference_label_path = os.path.join(base_inference_path, "t10k-labels-idx1-ubyte") inference_label_obj = inference_labels(inference_label_path) inference_image_obj = inference_images(inference_image_path) raw_Data = [] raw_Label = [] quan_steps = inference_image_obj.get_images_number() for i in range(quan_steps): raw_Data.append(inference_image_obj.read_images(1)[0]) raw_Label.append(inference_label_obj.read_labels(1)[0]) batchsize = 128 train = tf.convert_to_tensor(np.array(raw_Data, dtype='float32')) train_label = tf.convert_to_tensor(np.array(raw_Label, dtype='float32')) dataset = tf.data.Dataset.from_tensor_slices( (train, train_label)).batch(batchsize, drop_remainder=True)
from tensorflow.python.platform import gfile from tensorflow.python.client import timeline tf.compat.v1.disable_eager_execution() if __name__ == "__main__": print("Begin inference!") #base_path = "/home/mnist_dataset" base_path = os.getcwd() base_inference_path = os.path.join(base_path, "dataset") inference_image_path = os.path.join(base_inference_path, "t10k-images-idx3-ubyte") inference_label_path = os.path.join(base_inference_path, "t10k-labels-idx1-ubyte") inference_labels = inference_labels(inference_label_path) inference_images = inference_images(inference_image_path) input_image_size = int(inference_images.get_row_number()) * int( inference_images.get_column_number()) right_count = 0 batchsize = 128 total_time_ms = 0 global_step = 0 config = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=28, inter_op_parallelism_threads=1) with tf.compat.v1.Session(config=config) as sess: # saver = tf.train.import_meta_graph(os.path.join(base_path,"train_data/checkPoint/trainModel.meta")) # saver.restore(sess, tf.train.latest_checkpoint(os.path.join(base_path,"train_data/checkPoint"))) with gfile.FastGFile(