def training(autoencoder, encoder, augment, batch): sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # Adam(lr=0.01) autoencoder.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy']) x_train, x_test = dataset_loader.load_data_wrapper() train_set, test_set, valid_set = dataset_loader.data_preprocessing( x_train, x_test, augment) early = EarlyStopping(monitor='val_loss', min_delta=0, patience=50, mode='min', verbose=1) autoencoder.fit(train_set[0], train_set[1], epochs=500, batch_size=batch, shuffle=True, validation_data=(valid_set[0], valid_set[1]), callbacks=[early]) # TensorBoard(log_dir='C:/Users/213539359/Downloads/AlexNet-Tensorflow-master/logs/'), # autoencoder.save('C:/Users/213539359/Downloads/AlexNet-Tensorflow-master/model/autoencoder_3.h5') encoded_img = encoder.predict(test_set[0]) decoded_imgs = autoencoder.predict(test_set[0]) results = autoencoder.evaluate(test_set[0], test_set[1], batch_size=1) print("TEST LOSS, TEST ACC: ", results) return x_test, decoded_imgs, encoded_img
import dataset_loader training_data, validation_data, test_data = dataset_loader.load_data_wrapper() import neuralnet x = int(input("Enter the no. of neurons in the hidden layer: ")) net = neuralnet.NeuralNet([784, x, 10]) e = int(input("Enter the no. of epochs: ")) s = int(input("Enter the size of each batch: ")) l = int(input("Enter the learning rate: ")) net.train(training_set=training_data, no_of_epochs=e, size_of_batch=s, learning_rate=l, test_set=test_data)