コード例 #1
0
    def _fill_names_batches(self, shuffle):
        '''Create the desired batches of sequences

        * Select the desired sequences according to seq_per_subset
        * Set self.nsamples, self.nbatches and self.names_batches.
        * Set self.names_batches, an iterator over the batches of names.
        '''
        # self.names_sequences has the following structure:
        #   key: a subset
        #   value: a tuple of *sequences* with structure
        #       `((subset, filename1), (subset, filename2), ..)`
        #       and length `seq_length`.
        # E.g.,
        # names_sequences['0001TP'][0] = (('0001TP', '0001TP_006690.png'),)
        #
        # Here we copy it in `names_sequences`, selecting a random subset
        # of values per key in case a limit has been imposed via
        # self.seq_per_subset.
        names_sequences = OrderedDict()
        for prefix, sequences in self.names_sequences.items():

            # Pick only a subset of sequences per each video
            if self.seq_per_subset:
                # Pick `seq_per_subset` random indices
                idx = np.random.permutation(range(
                    len(sequences)))[:self.seq_per_subset]
                # Select only those sequences
                sequences = np.array(sequences)[idx]

            names_sequences.setdefault(prefix, []).extend(sequences)

        # Group the sequences into minibatches of `batch_size` length
        if self.one_subset_per_batch:
            # Group each subset separately
            names_batches = [
                el for seq in names_sequences.itervalues()
                for el in grouper(seq, self.batch_size)
            ]
            if shuffle:
                self.rng.shuffle(names_batches)  # shuffle the batches
        else:
            # Concat the values in a unique list, get rid of the keys
            names_sequences_flat = [
                el for outer_el in names_sequences.values() for el in outer_el
            ]
            if shuffle:
                self.rng.shuffle(names_sequences_flat)  # shuffle the sequences
            # Group all the subsets together
            names_batches = [
                el for el in grouper(names_sequences_flat, self.batch_size)
            ]
        self.nsamples = len(names_sequences)
        self.nbatches = len(names_batches)
        # `names_batches` contains three nested tuples and has shape
        # (batch_size, seq_length, 2), where the most inner element is a
        # tuple `(subset, filename)`.
        self.names_batches = iter(names_batches)
コード例 #2
0
    def _fill_names_batches(self, shuffle):
        '''Create the desired batches of sequences

        * Select the desired sequences according to the parameters
        * Set self.nsamples, self.nbatches and self.names_batches.
        * Set self.names_batches, an iterator over the batches of names.
        '''
        names_sequences = []
        for prefix, sequences in self.names_sequences.items():

            # Pick only a subset of sequences per each video
            if self.seq_per_subset:
                # Pick `seq_per_subset` random indices
                idx = np.random.permutation(range(len(sequences)))[
                    :self.seq_per_subset]
                # Select only those sequences
                sequences = np.array(sequences)[idx]

            names_sequences.extend(sequences)

        # Shuffle the sequences
        if shuffle:
            self.rng.shuffle(names_sequences)

        # Group the sequences into minibatches
        names_batches = [el for el in grouper(names_sequences,
                                              self.batch_size)]
        self.nsamples = len(names_sequences)
        self.nbatches = len(names_batches)
        self.names_batches = iter(names_batches)
コード例 #3
0
    def _fill_names_batches(self, shuffle):
        '''Create the desired batches of sequences

        * Select the desired sequences according to seq_per_subset
        * Set self.nsamples, self.nbatches and self.names_batches.
        * Set self.names_batches, an iterator over the batches of names.
        '''
        names_sequences = OrderedDict()
        for prefix, sequences in self.names_sequences.items():

            # Pick only a subset of sequences per each video
            if self.seq_per_subset:
                # Pick `seq_per_subset` random indices
                idx = np.random.permutation(range(
                    len(sequences)))[:self.seq_per_subset]
                # Select only those sequences
                sequences = np.array(sequences)[idx]

            names_sequences.setdefault(prefix, []).extend(sequences)

        # Group the sequences into minibatches
        if self.one_subset_per_batch:
            names_batches = [
                el for seq in names_sequences.itervalues()
                for el in grouper(seq, self.batch_size)
            ]
            if shuffle:
                self.rng.shuffle(names_batches)  # shuffle the batches
        else:
            names_sequences = [
                el for outer_el in names_sequences.values() for el in outer_el
            ]
            if shuffle:
                self.rng.shuffle(names_sequences)  # shuffle the sequences
            names_batches = [
                el for el in grouper(names_sequences, self.batch_size)
            ]
        self.nsamples = len(names_sequences)
        self.nbatches = len(names_batches)
        self.names_batches = iter(names_batches)
コード例 #4
0
    def _fill_names_batches(self, shuffle):
        '''Create the desired batches of sequences

        * Select the desired sequences according to seq_per_subset
        * Set self.nsamples, self.nbatches and self.names_batches.
        * Set self.names_batches, an iterator over the batches of names.
        '''
        names_sequences = OrderedDict()
        for prefix, sequences in self.names_sequences.items():

            # Pick only a subset of sequences per each video
            if self.seq_per_subset:
                # Pick `seq_per_subset` random indices
                idx = np.random.permutation(range(len(sequences)))[
                    :self.seq_per_subset]
                # Select only those sequences
                sequences = np.array(sequences)[idx]

            names_sequences.setdefault(prefix, []).extend(sequences)

        # Group the sequences into minibatches
        if self.one_subset_per_batch:
            names_batches = [el for seq in names_sequences.itervalues()
                             for el in grouper(seq, self.batch_size)]
            if shuffle:
                self.rng.shuffle(names_batches)  # shuffle the batches
        else:
            names_sequences = [el for outer_el in names_sequences.values()
                               for el in outer_el]
            if shuffle:
                self.rng.shuffle(names_sequences)  # shuffle the sequences
            names_batches = [el for el in grouper(names_sequences,
                                                  self.batch_size)]
        self.nsamples = len(names_sequences)
        self.nbatches = len(names_batches)
        self.names_batches = iter(names_batches)