parser.add_option("-s", "--sample-count", dest="sampleCount", default=256) parser.add_option("-c", "--distribution", dest="distribution", default=None, type="str") parser.add_option("-o", "--output", dest="output", type="str") parser.add_option("-d", "--dry-run", action="store_true", dest="dryRun") (options, args) = parser.parse_args() directory = args[0] dataset = Dataset(directory) if options.superIndex == -1 and options.index == -1: targetBSDF = dataset.lastAvailableBSDF() else: targetBSDF = dataset.BSDFAt(iteration=options.index, superiteration=options.superIndex) print targetBSDF if options.dryRun: sys.exit(0) testset = dataset.testSet() sphereXML = os.path.dirname(__file__) + "/data/sphere-embeddable.xml" sphereXMLP = os.path.dirname(__file__) + "/data/sphere-postprocessed.xml" testset.embedOnto(sphereXML, sphereXMLP) renderable = testset.renderables[0]
# Plots high sample count last image. parser = optparse.OptionParser() parser.add_option("-s", "--samples", dest="samples", default=2048, type="int") parser.add_option("-c", "--distribution", dest="distribution", default=None) (options, args) = parser.parse_args() directory = args[0] dataset = Dataset(directory) # TODO: Temporary copyfile(dataset.testSet().targetMeshPath, "/tmp/mts_mesh_intensity_slot_0.ply") renderable = dataset.testSet().renderable(1) pt0 = np.array(dataset.lastAvailableBSDF()) pt1 = np.array(dataset.testSet().targetBSDF()) paramList = dataset.testSet().parameterList() #print paramList #print pt0 #print toMap(paramList, pt1) if dataset.testSet().bsdfAdaptiveSampled: adaptiveParamList = dataset.bsdfAdaptiveSamplingParameterList print adaptiveParamList adaptiveParamMap = toMap(adaptiveParamList, len(adaptiveParamList) * [1.0]) else: adaptiveParamMap = {} renderable.setEmbeddedParameter("sampleCount", options.samples) renderable.setParameter("blockSize", 8)
profiles = [{ "name": "invAlpha", "sampleWeights": invAlpha(dataset.testSet().bsdfDictionary).tolist(), "type": "bsdf-adaptive" }, { "name": "uniform", "sampleWeights": [1.0] * len(dataset.testSet().bsdfDictionary["elements"]), "type": "bsdf-adaptive" }, { "name": "bsdfWeight", "sampleWeights": dataset.lastAvailableBSDF(), "type": "bsdf-adaptive" }] uniform = np.stack( [np.ones( (dataset.testSet().targetWidth, dataset.testSet().targetHeight))] * dataset.testSet().numLights(), axis=0) np.save(directory + "/uniform.npy", uniform) spatialProfiles = [{ "name": "spatialUniform", "type": "spatial-custom", "spatial-sampler": directory + "/uniform.npy" }, { "name": "spatialAdaptive",