eval_dir = log_dir batch_size = 128 num_classes = 10 epoch_size = 10000.0 num_iter = int(math.ceil(epoch_size / batch_size)) load_latest_checkpoint = False eval_interval_secs = 3 run_once = False tf.logging.set_verbosity(tf.logging.INFO) sess = tf.Session() ## Data with tf.device('/cpu:0'): d = cifar10_data(batch_size=batch_size, sess=sess) image_batch_tensor, target_batch_tensor = d.build_test_data_tensor( shuffle=False, augmentation=False) ## Model #logits = bn_conv.inference(image_batch_tensor, num_classes=num_classes, is_training=True) #from tensorflow.contrib.slim.nets import resnet_v2 #with slim.arg_scope(custom_ops.resnet_arg_scope(is_training=True)): # net, end_points = resnet_v2.resnet_v2_101(image_batch_tensor, # num_classes=num_classes, # global_pool=True)# reduce output to rank 2 (not working) #logits = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=False) import nets.resnet_old_reference hps = nets.resnet_old_reference.HParams(batch_size=batch_size, num_classes=num_classes, min_lrn_rate=None,
ONLY_EVAL = False # If True, no training is performed # --- EPOCHS = 500 # max number of epochs if the network never converges learning_rate = 0.01 DECREASE_LEARNING_RATE_AFTER_N_BAD_EPOCHS = 4 DECREASE_LEARNING_RATE_N_TIMES = 3 SAVE_AFTER_MIN_N_EPOCHS = -1 LEARNING_RATE_DECAY_FACTOR = 2.0 ## ---------------------------------------------------------------------------- ## DATA INPUT sess = tf.Session() # SIMPLY UNCOMMENT THE DATASET YOU WANT TO RUN ON. NOTHING ELSE IS NEEDED. #data = mnist_data(batch_size=BATCH_SIZE) data = cifar10_data(batch_size=BATCH_SIZE, sess=sess) #data = cifar100_data(batch_size=BATCH_SIZE, sess=sess) #data = imagenet_data(batch_size=64, sess=sess) # you need to use the download sh script in utils/imagenet_download/ #data = svhn_data(batch_size=BATCH_SIZE, sess=sess) #data = cars_data(batch_size=BATCH_SIZE, sess=sess) with tf.device('/cpu:0'): train_image_batch, train_label_batch = data.build_train_data_tensor( shuffle=True) test_image_batch, test_label_batch = data.build_test_data_tensor( shuffle=False) NUMBER_OF_CLASSES = data.NUMBER_OF_CLASSES IMG_HEIGHT = data.IMAGE_HEIGHT IMG_WIDTH = data.IMAGE_WIDTH NUM_CHANNELS = data.NUM_OF_CHANNELS