コード例 #1
0
    def __init__(self, root, split, isize, nsamples, noise_info, dynamic_info):

        # -- set init params --
        self.root = root
        self.split = split
        self.noise_info = noise_info
        self.dynamic_info = dynamic_info
        self.nsamples = nsamples
        self.isize = isize

        # -- create transforms --
        self.noise_trans = get_noise_transform(noise_info, noise_only=True)
        self.dynamic_trans = get_dynamic_transform(dynamic_info, None,
                                                   load_res)

        # -- load paths --
        self.paths = []

        # -- limit num of samples --
        self.indices = enumerate_indices(len(self.paths), nsamples)
        self.nsamples = len(self.indices)

        # -- single random dynamics --
        self.dyn_once = return_optional(dynamic_info, "sim_once", False)
        self.fixRandDynamics = RandomOnce(self.dyn_once, nsamples)

        # -- single random noise --
        self.noise_once = return_optional(noise_info, "sim_once", False)
        self.fixRandNoise_1 = RandomOnce(self.noise_once, nsamples)
        self.fixRandNoise_2 = RandomOnce(self.noise_once, nsamples)
コード例 #2
0
    def __init__(self, info, noise_trans=None, load_res=False):

        # -- setup parameters --
        self.nframes = info['nframes']
        self.ppf = info['ppf']
        self.frame_size = info['frame_size']
        self.load_res = load_res
        self.sobel_filter = create_sobel_filter()

        # -- manage frame size --
        if isinstance(self.frame_size, int):
            self.frame_size = (self.frame_size, self.frame_size)
        if not (self.frame_size is None):
            if self.frame_size[0] <= 64: self.very_small = True
            else: self.very_small = False
            self.min_frame_size = np.min(self.frame_size)
        else:
            self.very_small = None
            self.min_frame_size = None

        # -- optional --
        self.total_pixels = return_optional(info, 'total_pixels', 0)
        self.random_eraser_bool = return_optional(info, 'random_eraser_bool',
                                                  False)
        self.reset_seed = return_optional(info, 'reset_seed', False)
        self.textured = return_optional(info, 'textured', False)

        # -- init vars and consts --
        self.random_eraser = thT.RandomErasing()  #scale=(0.40,0.80))
        self.PI = 2 * torch.acos(torch.zeros(1)).item()
        self.szm = thT.Compose([ScaleZeroMean()])
        self.noise_trans = noise_trans
コード例 #3
0
def get_cbsd68_dataset(cfg):

    #
    # -- extract --
    #

    # -- misc --
    root = cfg.dataset.root
    noise_info = cfg.noise_params[cfg.noise_type]
    dynamic_info = cfg.dynamic
    isize = return_optional(cfg, "frame_size", None)

    # -- samples --
    nsamples = return_optional(cfg, "nsamples", 0)
    tr_nsamples = return_optional(cfg, "tr_nsamples", nsamples)
    val_nsamples = return_optional(cfg, "val_nsamples", nsamples)
    te_nsamples = return_optional(cfg, "te_nsamples", nsamples)

    # -- setup paths --
    root = Path(root) / Path("./template/images/")

    # -- create objcs --
    data = edict()
    data.tr = Template(root, "train", isize, tr_nsamples, noise_params,
                       dynamic_info)
    data.val = Template(root, "val", isize, val_samples, noise_params,
                        dynamic_info)
    data.test = Template(root, "test", isize, te_samples, noise_params,
                         dynamic_info)

    # -- create loader --
    loader = get_loader(cfg, data, cfg.batch_size)

    return data, loader
コード例 #4
0
    def __init__(self, iroot, froot, sroot, split, isize, ps, nsamples,
                 nframes, noise_info):

        # -- set init params --
        self.iroot = iroot
        self.froot = froot
        self.sroot = sroot
        self.split = split
        self.noise_info = noise_info
        self.ps = ps
        self.nsamples = nsamples
        self.isize = isize

        # -- create transforms --
        self.noise_trans = get_noise_transform(noise_info, noise_only=True)

        # -- load paths --
        self.paths, self.nframes, all_eq = read_files(iroot, froot, sroot,
                                                      split, isize, ps,
                                                      nframes)
        if not (all_eq):
            print("\n\n\n\nWarning: Not all bursts are same length!!!\n\n\n\n")
        self.groups = sorted(list(self.paths['images'].keys()))

        # -- limit num of samples --
        self.indices = enumerate_indices(len(self.paths['images']), nsamples)
        self.nsamples = len(self.indices)

        # -- single random noise --
        self.noise_once = return_optional(noise_info, "sim_once", False)
        self.fixRandNoise_1 = RandomOnce(self.noise_once, nsamples)
        self.fixRandNoise_2 = RandomOnce(self.noise_once, nsamples)
コード例 #5
0
def get_cbsd68_dataset(cfg):

    #
    # -- extract --
    #

    # -- noise and dyanmics --
    noise_info = cfg.noise_params
    dynamic_info = cfg.dynamic_info
    isize = return_optional(cfg, "frame_size", None)

    # -- samples --
    nsamples = return_optional(cfg, "nsamples", 0)
    tr_nsamples = return_optional(cfg, "tr_nsamples", nsamples)
    val_nsamples = return_optional(cfg, "val_nsamples", nsamples)
    te_nsamples = return_optional(cfg, "te_nsamples", nsamples)

    # -- setup paths --
    root = IMAGE_PATH

    # -- checks / re-assignments --
    dynamic_info.frame_size = isize

    # -- create objcs --
    data = edict()
    data.tr = CBSD68(root, "train", isize, tr_nsamples, noise_info,
                     dynamic_info)
    data.val = CBSD68(root, "val", isize, val_nsamples, noise_info,
                      dynamic_info)
    data.te = CBSD68(root, "test", isize, te_nsamples, noise_info,
                     dynamic_info)

    # -- create loader --
    loader = get_loader(cfg, data, cfg.batch_size)

    return data, loader
コード例 #6
0
def get_set8_dataset(cfg):

    #
    # -- extract --
    #

    # -- noise and dyanmics --
    noise_info = cfg.noise_params
    isize = return_optional(cfg, "frame_size", None)
    nframes = return_optional(cfg, "nframes", None)
    ps = return_optional(cfg.dataset, "patchsize", 3)
    tr_split = return_optional(cfg, "train_split", "train")  # alt = ["all"]

    # -- samples --
    nsamples = return_optional(cfg, "nsamples", 0)
    tr_nsamples = return_optional(cfg, "tr_nsamples", nsamples)
    val_nsamples = return_optional(cfg, "val_nsamples", nsamples)
    te_nsamples = return_optional(cfg, "te_nsamples", nsamples)

    # -- setup paths --
    iroot = IMAGE_PATH
    froot = FLOW_PATH
    sroot = IMAGE_SETS

    # -- create objcs --
    data = edict()
    data.tr = SET8(iroot, froot, sroot, tr_split, isize, ps, tr_nsamples,
                   nframes, noise_info)
    data.val = SET8(iroot, froot, sroot, "val", isize, ps, val_nsamples,
                    nframes, noise_info)
    data.te = SET8(iroot, froot, sroot, "test", isize, ps, te_nsamples,
                   nframes, noise_info)

    # -- create loader --
    loader = get_loader(cfg, data, cfg.batch_size)

    return data, loader
コード例 #7
0
ファイル: wrap_image_data.py プロジェクト: gauenk/cl_gen
def load_resample_dataset(cfg, records, use_wrapper=True):

    # -- sims from cfg --
    noise_fxn, dynamic_fxn = transforms_from_cfg(cfg)

    # -- cfg copy without noise --
    cfg_copy = copy.deepcopy(cfg)
    cfg_copy.noise_params.ntype = 'none'
    cfg_copy.noise_params['none'] = {}
    data, loader = load_dataset(cfg_copy, cfg_copy.dataset.mode)
    full_image_index = return_optional(cfg_copy.dataset, 'full_image_index', 2)

    # -- wrapped --
    wdata = edict({})
    for key, value in data.items():
        if use_wrapper:
            wrapper = WrapperDataset(value, noise_fxn, dynamic_fxn,
                                     full_image_index)
        else:
            wrapper = value
        wdata[key] = ResampleWrapperDataset(wrapper, records[key])
    wloader = get_loader(cfg, wdata, cfg.batch_size, None)
    return wdata, wloader
コード例 #8
0
def get_burst_with_flow_kitti_dataset(cfg, mode):
    root = cfg.dataset.root
    root = Path(root) / Path("kitti")
    data = edict()
    batch_size = cfg.batch_size
    rtype = 'dict' if cfg.dataset.dict_loader else 'list'
    nnf_K = 3
    nnf_ps = 3
    nnf_exists = return_optional(cfg.dataset, 'nnf_exists', True)

    crop = cfg.frame_size
    if isinstance(crop, int):
        print("WARNING: the [cfg.frame_size] parameter is just an int.")
    path_resize = (1224, 370)
    load_resize = crop  #(256, 128)
    resizes = edict({'path': path_resize, 'load': load_resize})

    if mode == "dynamic":
        edition = "2015"
        nframes = cfg.nframes
        noise_info = cfg.noise_params
        data.tr = BurstWithFlowKITTI(root, "train", edition, nframes,
                                     noise_info, crop, resizes, nnf_K, nnf_ps,
                                     nnf_exists)
        data.val = BurstWithFlowKITTI(root, "val", edition, nframes,
                                      noise_info, crop, resizes, nnf_K, nnf_ps,
                                      nnf_exists)
        data.te = BurstWithFlowKITTI(root, "test", edition, nframes,
                                     noise_info, crop, resizes, nnf_K, nnf_ps,
                                     nnf_exists)
    else:
        raise ValueError(f"Unknown KITTI mode {mode}")
    # for split in data:
    #     print(split,len(data[split]))

    loader = get_loader(cfg, data, batch_size, mode)
    return data, loader
コード例 #9
0
ファイル: burst_kitti.py プロジェクト: gauenk/cl_gen
def get_burst_kitti_dataset(cfg, mode):
    root = cfg.dataset.root
    root = Path(root) / Path("kitti")
    data = edict()
    batch_size = cfg.batch_size
    rtype = 'dict' if cfg.dataset.dict_loader else 'list'
    nnf_K = 3
    nnf_ps = 3
    nnf_exists = return_optional(cfg.dataset, 'nnf_exists', True)
    if mode in ["dynamic", "denoising"]:
        edition = "2015"
        nframes = cfg.nframes
        noise_info = cfg.noise_params
        data.tr = BurstKITTI(root, "train", edition, nframes, noise_info,
                             nnf_K, nnf_ps, nnf_exists)
        data.val = BurstKITTI(root, "val", edition, nframes, noise_info, nnf_K,
                              nnf_ps, nnf_exists)
        data.te = BurstKITTI(root, "test", edition, nframes, noise_info, nnf_K,
                             nnf_ps, nnf_exists)
    else:
        raise ValueError(f"Unknown KITTI mode {mode}")

    loader = get_loader(cfg, data, batch_size, mode)
    return data, loader