コード例 #1
0
def main(args):
    rs=[]
    for i in range(1,repeat):
        print('doing{}'.format(i))
        test_loader = custom_data_loader.benchmarkLoader(args)
        model    = custom_model.buildModel(args)
        # print(sum(p.numel() for p in model.parameters() if p.requires_grad))
        recorder = recorders.Records(args.log_dir)
        # r=test_utils.test_split2c(args, 'test', test_loader, model, log, 1, recorder, padding=4, stride=128)
        r=test_utils.test_split_rob(args, 'test', test_loader, model, log, 1, recorder, padding=16, stride=96, noise_level=i)
        # r=test_utils.test(args, 'test', test_loader, model, log, 1, recorder)
        r.append(np.mean(r))
        rs.append(np.stack(r))
    # test_utils.test(args, 'test', test_loader, model, log, 1, recorder)
    # rs=np.stack(rs)
    # every_mean=np.mean(rs,axis=0)
    # mean=np.mean(rs)
    # print(every_mean,mean)

    print(rs)
    # rs=np.stack(rs,axis=0)
    # rs=np.mean(rs,axis=0)

    workbook = xlwt.Workbook(encoding='ascii')
    worksheet = workbook.add_sheet('My Worksheet', cell_overwrite_ok=True)
    for i,r in zip(range(repeat),rs):
        for ii,rr in zip(range(10),r):
            worksheet.write(i + 1, ii, label=rr)
    workbook.save('result/robust/pro.xls')
コード例 #2
0
def main(args):
    rs = []
    for i in range(15, 16):
        # path="data/Training5shadow/checkp_{}.pth.tar".format(i)
        # args.retrain=path
        log = logger.Logger(args)
        test_loader = custom_data_loader.benchmarkLoader(args)
        model = custom_model.buildModel(args)
        # print(sum(p.numel() for p in model.parameters() if p.requires_grad))
        recorder = recorders.Records(args.log_dir)
        # r=test_utils.test_split2c(args, 'test', test_loader, model, log, 1, recorder, padding=4, stride=128)
        r = test_utils.test_split(args,
                                  'test',
                                  test_loader,
                                  model,
                                  log,
                                  1,
                                  recorder,
                                  padding=0,
                                  stride=64)
        rs.append(np.mean(r))
    # test_utils.test(args, 'test', test_loader, model, log, 1, recorder)
    # rs=np.stack(rs)
    # every_mean=np.mean(rs,axis=0)
    # mean=np.mean(rs)
    # print(every_mean,mean)

    print(rs)

    f = open('runlog.txt', 'w+')
    f.writelines(np.array2string(rs))
    f.close()
コード例 #3
0
def main(args):
    rs = []
    for i in range(repeat):
        args.in_img_num = -4 + i
        # path="data/Training5shadow/checkp_{}.pth.tar".format(i)
        # args.retrain=path
        log = logger.Logger(args)
        test_loader = custom_data_loader.benchmarkLoader(args)
        model = custom_model.buildModel(args)
        # print(sum(p.numel() for p in model.parameters() if p.requires_grad))
        recorder = recorders.Records(args.log_dir)
        # r=test_utils.test_split2c(args, 'test', test_loader, model, log, 1, recorder, padding=4, stride=128)
        r = test_utils.test_split(args,
                                  'test',
                                  test_loader,
                                  model,
                                  log,
                                  1,
                                  recorder,
                                  padding=10,
                                  stride=120)
        rs.append(r)
    # test_utils.test(args, 'test', test_loader, model, log, 1, recorder)
    # rs=np.stack(rs)
    # every_mean=np.mean(rs,axis=0)
    # mean=np.mean(rs)
    # print(every_mean,mean)

    print(rs)
    workbook = xlwt.Workbook(encoding='ascii')
    worksheet = workbook.add_sheet('My Worksheet', cell_overwrite_ok=True)
    for i, r in zip(range(repeat), rs):
        for ii, rr in zip(range(9), r):
            worksheet.write(i + 1, ii, label=rr)
    workbook.save('result/sparse/sparse_pro{}.xls'.format(i))
コード例 #4
0
ファイル: run_stage0.py プロジェクト: wymGAKKI/saps
def main(args):
    model = custom_model.buildModelStage0(args)
    val_loader = custom_data_loader.benchmarkLoader(args)
    #test_loader = custom_data_loader.benchmarkLoader(args)
    #model    = custom_model.buildModel(args)
    recorder = recorders.Records(args.log_dir)
    test_utils.test(args, 'val', val_loader, model, log, 1, recorder)
    log.plotCurves(recorder, 'val')
コード例 #5
0
def main(args):
    test_loader = custom_data_loader.benchmarkLoader(args)
    model = custom_model.buildModel(args)
    model_s2 = custom_model.buildModelStage2(args)
    models = [model, model_s2]

    recorder = recorders.Records(args.log_dir)
    test_utils.test(args, 'test', test_loader, models, log, 1, recorder)
コード例 #6
0
ファイル: run_stage3.py プロジェクト: wymGAKKI/saps
def main(args):
    model = custom_model.buildModelStage3(args)

    recorder = recorders.Records(args.log_dir)
    val_loader = custom_data_loader.benchmarkLoader(args)
    #train_loader, val_loader = custom_data_loader.reflectanceDataloader(args)
    test_utils.testOnBm(args, 'val', val_loader, model, log, 1, recorder)
    log.plotCurves(recorder, 'val')
コード例 #7
0
def main(args):
    rs=[]
    for i in range(5,6):
        # path="data/Training5shadow/checkp_{}.pth.tar".format(i)
        # args.retrain=path
        log = logger.Logger(args)
        test_loader = custom_data_loader.benchmarkLoader(args)
        model    = custom_model.buildModel(args)
        # print(sum(p.numel() for p in model.parameters() if p.requires_grad))
        recorder = recorders.Records(args.log_dir)
        # r=test_utils.test_split2c(args, 'test', test_loader, model, log, 1, recorder, padding=4, stride=128)
        test_utils.estimate(args, i, test_loader, model, log, 1, recorder, padding=4, stride=64, split=True)
コード例 #8
0
ファイル: run_model_MERL.py プロジェクト: liucu0135/pert_lite
def main(args):
    rs = []
    # path="data/Training4shadow/checkp_{}.pth.tar".format(i)
    # args.retrain=path
    test_loader = custom_data_loader.benchmarkLoader(args)
    model = custom_model.buildModel(args)
    recorder = recorders.Records(args.log_dir)
    # r=test_utils.test_split(args, 'test', test_loader, model, log, 1, recorder, padding=4, stride=160)
    # errors=test_utils.test(args, 'test', test_loader, model, log, 1, recorder)
    errors = test_utils.test2c(args, 'test', test_loader, model, log, 1,
                               recorder)

    csvfile = open('names.csv', 'w', newline='')
    obj = csv.writer(csvfile)
    for person in errors:
        obj.writerow(person)
    csvfile.close()
コード例 #9
0
def main(args):
    test_loader = custom_data_loader.benchmarkLoader(args)
    model = custom_model.buildModel(args)
    recorder = recorders.Records(args.log_dir)
    test_utils.test(args, 'test', test_loader, model, log, 1, recorder)
    log.plotCurves(recorder, 'test')