def test_csv_dataset_reader(path_type, split, features, keep_in_memory, csv_path, tmp_path): if issubclass(path_type, str): path = csv_path elif issubclass(path_type, list): path = [csv_path] cache_dir = tmp_path / "cache" expected_split = str(split) if split else "train" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" default_expected_features = { "col_1": "int64", "col_2": "int64", "col_3": "float64" } expected_features = features.copy( ) if features else default_expected_features features = Features( {feature: Value(dtype) for feature, dtype in features.items()}) if features else None with assert_arrow_memory_increases( ) if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = CsvDatasetReader(path, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] assert dataset.split == expected_split for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype
def test_dataset_from_csv_path_type(path_type, csv_path, tmp_path): if issubclass(path_type, str): path = csv_path elif issubclass(path_type, list): path = [csv_path] cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} dataset = CsvDatasetReader(path, cache_dir=cache_dir).read() _check_csv_dataset(dataset, expected_features)
def test_dataset_from_csv_features(features, csv_path, tmp_path): cache_dir = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" default_expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = CsvDatasetReader(csv_path, features=features, cache_dir=cache_dir).read() _check_csv_dataset(dataset, expected_features)
def test_dataset_from_csv_split(split, csv_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = { "col_1": "int64", "col_2": "int64", "col_3": "float64" } dataset = CsvDatasetReader(csv_path, cache_dir=cache_dir, split=split).read() _check_csv_dataset(dataset, expected_features) assert dataset.split == str(split) if split else "train"
def test_dataset_to_csv_multiproc(csv_path, tmp_path): cache_dir = tmp_path / "cache" output_csv = os.path.join(cache_dir, "tmp.csv") dataset = CsvDatasetReader({"train": csv_path}, cache_dir=cache_dir).read() CsvDatasetWriter(dataset["train"], output_csv, index=False, num_proc=2).write() original_csv = iter_csv_file(csv_path) expected_csv = iter_csv_file(output_csv) for row1, row2 in zip(original_csv, expected_csv): assert row1 == row2
def test_csv_datasetdict_reader_split(split, csv_path, tmp_path): if split: path = {split: csv_path} else: split = "train" path = {"train": csv_path, "test": csv_path} cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} dataset = CsvDatasetReader(path, cache_dir=cache_dir).read() _check_csv_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys())
def test_dataset_from_csv_keep_in_memory(keep_in_memory, csv_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = { "col_1": "int64", "col_2": "int64", "col_3": "float64" } with assert_arrow_memory_increases( ) if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = CsvDatasetReader(csv_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_csv_dataset(dataset, expected_features)
def test_csv_datasetdict_reader(split, features, keep_in_memory, csv_path, tmp_path): if split: path = {split: csv_path} else: split = "train" path = {"train": csv_path, "test": csv_path} cache_dir = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" default_expected_features = { "col_1": "int64", "col_2": "int64", "col_3": "float64" } expected_features = features.copy( ) if features else default_expected_features features = Features( {feature: Value(dtype) for feature, dtype in features.items()}) if features else None previous_allocated_memory = pa.total_allocated_bytes() dataset = CsvDatasetReader(path, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() increased_allocated_memory = (pa.total_allocated_bytes() - previous_allocated_memory) > 0 assert isinstance(dataset, DatasetDict) dataset = dataset[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] assert dataset.split == split for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype assert increased_allocated_memory == keep_in_memory
def test_dataset_to_csv_invalidproc(csv_path, tmp_path): cache_dir = tmp_path / "cache" output_csv = os.path.join(cache_dir, "tmp.csv") dataset = CsvDatasetReader({"train": csv_path}, cache_dir=cache_dir).read() with pytest.raises(ValueError): CsvDatasetWriter(dataset["train"], output_csv, index=False, num_proc=0)