def TSS(root, source_image_transform=None, target_image_transform=None, flow_transform=None, co_transform=None, split=None): train_list, test_list = make_dataset(root, split) train_dataset = ListDataset(root, train_list, source_image_transform=source_image_transform, target_image_transform=target_image_transform, flow_transform=flow_transform, co_transform=co_transform, loader=TSS_flow_loader, mask=True, size=True) test_dataset = ListDataset(root, test_list, source_image_transform=source_image_transform, target_image_transform=target_image_transform, flow_transform=flow_transform, co_transform=co_transform, loader=TSS_flow_loader, mask=True, size=True) return train_dataset, test_dataset
def KITTI_noc(root, source_image_transform=None, target_image_transform=None, flow_transform=None, co_transform=None, split=None): train_list, test_list = make_dataset(root, split, False) train_dataset = ListDataset(root, train_list, source_image_transform=source_image_transform, target_image_transform=target_image_transform, flow_transform=flow_transform, co_transform=co_transform, loader=KITTI_flow_loader, mask=True) test_dataset = ListDataset(root, test_list, source_image_transform=source_image_transform, target_image_transform=target_image_transform, flow_transform=flow_transform, co_transform=co_transform, loader=KITTI_flow_loader, mask=True) return train_dataset, test_dataset
def kitti_occ_both(root, source_image_transform=None, target_image_transform=None, flow_transform=None, co_transform=None, test_image_transform=None, split=None): train_list1, test_list1 = make_dataset(os.path.join( root, 'KITTI_2012/training/'), dataset_name='KITTI_2012/training/', split=split, occ=True) train_list2, test_list2 = make_dataset(os.path.join( root, 'KITTI_2015/training/'), dataset_name='KITTI_2015/training/', split=split, occ=True) train_dataset = ListDataset(root, train_list1 + train_list2, source_image_transform=source_image_transform, target_image_transform=target_image_transform, flow_transform=flow_transform, co_transform=co_transform, loader=KITTI_flow_loader, mask=True) if test_image_transform is None: test_dataset = ListDataset( root, test_list1 + test_list2, source_image_transform=source_image_transform, target_image_transform=target_image_transform, flow_transform=flow_transform, co_transform=co_flow_and_images_transforms.CenterCrop((368, 1224)), loader=KITTI_flow_loader, mask=True) else: test_dataset = ListDataset( root, test_list1 + test_list2, source_image_transform=test_image_transform, target_image_transform=test_image_transform, flow_transform=flow_transform, co_transform=co_flow_and_images_transforms.CenterCrop((368, 1224)), loader=KITTI_flow_loader, mask=True) return train_dataset, test_dataset
def fusion_data(root, transform=None, target_transform=None, co_transform=None, split=None): train_list, test_list = make_dataset(root, split) train_dataset = ListDataset(root, train_list, transform, target_transform, co_transform) test_dataset = ListDataset(root, test_list, transform, target_transform, None) return train_dataset, test_dataset