コード例 #1
0
def fetch_multimnist_image(_label):
    if _label == EMPTY:
        _label = ''

    loader = torch.utils.data.DataLoader(datasets.MultiMNIST(
        './data',
        train=False,
        download=True,
        transform=transforms.ToTensor(),
        target_transform=charlist_tensor),
                                         batch_size=1,
                                         shuffle=True)

    images = []
    for image, label in loader:
        if tensor_to_string(label.squeeze(0)) == _label:
            images.append(image)

    if len(images) == 0:
        sys.exit('No images with label (%s) found.' % _label)

    images = torch.cat(images).cpu().numpy()
    ix = np.random.choice(np.arange(images.shape[0]))
    image = images[ix]

    image = torch.from_numpy(image).float()
    image = image.unsqueeze(0)
    return Variable(image, volatile=True)
コード例 #2
0
                        type=str,
                        help='path to output directory of weak.py')
    parser.add_argument('--cuda',
                        action='store_true',
                        default=False,
                        help='enables CUDA training')
    args = parser.parse_args()
    args.cuda = args.cuda and torch.cuda.is_available()

    x, y1, y2 = [], [], []

    for dir_path in glob(os.path.join(args.models_dir, '*')):
        weak_perc = float(os.path.basename(dir_path).split('_')[-1])
        loader = torch.utils.data.DataLoader(datasets.MultiMNIST(
            './data',
            train=False,
            download=True,
            transform=transforms.ToTensor(),
            target_transform=charlist_tensor),
                                             batch_size=128,
                                             shuffle=True)
        vae = load_checkpoint(os.path.join(dir_path, 'model_best.pth.tar'),
                              use_cuda=args.cuda)
        vae.eval()
        weak_char_acc, weak_len_acc = test_multimnist(vae,
                                                      loader,
                                                      use_cuda=args.cuda,
                                                      verbose=False)
        x.append(weak_perc)
        y1.append(weak_char_acc)
        y2.append(weak_len_acc)
        print('Got accuracies for %s.' % dir_path)
コード例 #3
0
def train_pipeline(out_dir,
                   weak_perc_m1,
                   weak_perc_m2,
                   n_latents=20,
                   batch_size=128,
                   epochs=20,
                   lr=1e-3,
                   log_interval=10,
                   cuda=False):
    """Pipeline to train and test MultimodalVAE on MNIST dataset. This is 
    identical to the code in train.py.

    :param out_dir: directory to store trained models
    :param weak_perc_m1: percent of time to show first modality
    :param weak_perc_m2: percent of time to show second modality
    :param n_latents: size of latent variable (default: 20)
    :param batch_size: number of examples to show at once (default: 128)
    :param epochs: number of loops over dataset (default: 20)
    :param lr: learning rate (default: 1e-3)
    :param log_interval: interval of printing (default: 10)
    :param cuda: whether to use cuda or not (default: False)
    """
    # create loaders for MNIST
    train_loader = torch.utils.data.DataLoader(datasets.MultiMNIST(
        './data',
        train=True,
        download=True,
        transform=transforms.ToTensor(),
        target_transform=charlist_tensor),
                                               batch_size=batch_size,
                                               shuffle=True)
    test_loader = torch.utils.data.DataLoader(datasets.MultiMNIST(
        './data',
        train=False,
        download=True,
        transform=transforms.ToTensor(),
        target_transform=charlist_tensor),
                                              batch_size=batch_size,
                                              shuffle=True)

    # load multimodal VAE
    vae = MultimodalVAE(n_latents=n_latents, use_cuda=cuda)
    if cuda:
        vae.cuda()

    optimizer = optim.Adam(vae.parameters(), lr=lr)

    def train(epoch):
        random.seed(42)
        np.random.seed(42)  # important to have the same seed
        # in order to make the same choices for weak supervision
        # otherwise, we end up showing different examples over epochs
        vae.train()

        joint_loss_meter = AverageMeter()
        image_loss_meter = AverageMeter()
        text_loss_meter = AverageMeter()

        for batch_idx, (image, text) in enumerate(train_loader):
            if cuda:
                image, text = image.cuda(), text.cuda()
            image, text = Variable(image), Variable(text)
            optimizer.zero_grad()

            recon_image_1, recon_text_1, mu_1, logvar_1 = vae(image, text)
            loss = loss_function(mu_1,
                                 logvar_1,
                                 recon_image=recon_image_1,
                                 image=image,
                                 recon_text=recon_text_1,
                                 text=text,
                                 kl_lambda=kl_lambda,
                                 lambda_xy=1.,
                                 lambda_yx=1.)
            joint_loss_meter.update(loss.data[0], len(image))

            # depending on this flip, we decide whether or not to show a modality
            # versus another one.
            flip = np.random.random()

            if flip < weak_perc_m1:
                recon_image_2, recon_text_2, mu_2, logvar_2 = vae(image=image)
                loss_2 = loss_function(mu_2,
                                       logvar_2,
                                       recon_image=recon_image_2,
                                       image=image,
                                       recon_text=recon_text_2,
                                       text=text,
                                       kl_lambda=kl_lambda,
                                       lambda_xy=1.,
                                       lambda_yx=1.)
                image_loss_meter.update(loss_2.data[0], len(image))
                loss += loss_2

            flip = np.random.random()
            if flip < weak_perc_m2:
                recon_image_3, recon_text_3, mu_3, logvar_3 = vae(text=text)
                loss_3 = loss_function(mu_3,
                                       logvar_3,
                                       recon_image=recon_image_3,
                                       image=image,
                                       recon_text=recon_text_3,
                                       text=text,
                                       kl_lambda=kl_lambda,
                                       lambda_xy=0.,
                                       lambda_yx=1.)
                text_loss_meter.update(loss_3.data[0], len(text))
                loss += loss_3

            loss.backward()
            optimizer.step()

            if batch_idx % log_interval == 0:
                print(
                    '[Weak (Image) {:.0f}% | Weak (Text) {:.0f}%] Train Epoch: {} [{}/{} ({:.0f}%)]\tJoint Loss: {:.6f}\tImage Loss: {:.6f}\tText Loss: {:.6f}'
                    .format(100. * weak_perc_m1, 100. * weak_perc_m2, epoch,
                            batch_idx * len(image), len(train_loader.dataset),
                            100. * batch_idx / len(train_loader),
                            joint_loss_meter.avg, image_loss_meter.avg,
                            text_loss_meter.avg))

        print(
            '====> [Weak (Image) {:.0f}% | Weak (Text) {:.0f}%] Epoch: {} Joint loss: {:.4f}\tImage loss: {:.4f}\tText loss: {:.4f}'
            .format(100. * weak_perc_m1, 100. * weak_perc_m2, epoch,
                    joint_loss_meter.avg, image_loss_meter.avg,
                    text_loss_meter.avg))

    def test():
        vae.eval()
        test_joint_loss = 0
        test_image_loss = 0
        test_text_loss = 0

        for batch_idx, (image, text) in enumerate(test_loader):
            if cuda:
                image, text = image.cuda(), text.cuda()
            image, text = Variable(image), Variable(text)

            # in test i always care about the joint loss -- so we don't anneal
            # back joint examples as we do in train
            recon_image_1, recon_text_1, mu_1, logvar_1 = vae(image, text)
            recon_image_2, recon_text_2, mu_2, logvar_2 = vae(image=image)
            recon_image_3, recon_text_3, mu_3, logvar_3 = vae(text=text)

            loss_1 = loss_function(mu_1,
                                   logvar_1,
                                   recon_image=recon_image_1,
                                   image=image,
                                   recon_text=recon_text_1,
                                   text=text,
                                   kl_lambda=kl_lambda,
                                   lambda_xy=1.,
                                   lambda_yx=1.)
            loss_2 = loss_function(mu_2,
                                   logvar_2,
                                   recon_image=recon_image_2,
                                   image=image,
                                   recon_text=recon_text_2,
                                   text=text,
                                   kl_lambda=kl_lambda,
                                   lambda_xy=1.,
                                   lambda_yx=1.)
            loss_3 = loss_function(mu_3,
                                   logvar_3,
                                   recon_image=recon_image_3,
                                   image=image,
                                   recon_text=recon_text_3,
                                   text=text,
                                   kl_lambda=kl_lambda,
                                   lambda_xy=0.,
                                   lambda_yx=1.)

            test_joint_loss += loss_1.data[0]
            test_image_loss += loss_2.data[0]
            test_text_loss += loss_3.data[0]

        test_loss = test_joint_loss + test_image_loss + test_text_loss
        test_joint_loss /= len(test_loader)
        test_image_loss /= len(test_loader)
        test_text_loss /= len(test_loader)
        test_loss /= len(test_loader)

        print(
            '====> [Weak (Image) {:.0f}% | Weak (Text) {:.0f}%] Test joint loss: {:.4f}\timage loss: {:.4f}\ttext loss:{:.4f}'
            .format(100. * weak_perc_m1, 100. * weak_perc_m2, test_joint_loss,
                    test_image_loss, test_text_loss))

        return test_loss, (test_joint_loss, test_image_loss, test_text_loss)

    best_loss = sys.maxint
    schedule = iter([5e-5, 1e-4, 5e-4, 1e-3])

    for epoch in range(1, epochs + 1):
        if (epoch - 1) % 10 == 0:
            try:
                kl_lambda = next(schedule)
            except:
                pass

        train(epoch)
        loss, (joint_loss, image_loss, text_loss) = test()

        is_best = loss < best_loss
        best_loss = min(loss, best_loss)

        save_checkpoint(
            {
                'state_dict': vae.state_dict(),
                'best_loss': best_loss,
                'joint_loss': joint_loss,
                'image_loss': image_loss,
                'text_loss': text_loss,
                'optimizer': optimizer.state_dict(),
            },
            is_best,
            folder=out_dir)
コード例 #4
0
    if not os.path.isdir('./trained_models'):
        os.makedirs('./trained_models')

    if not os.path.isdir('./trained_models/text_only'):
        os.makedirs('./trained_models/text_only')

    if not os.path.isdir('./results'):
        os.makedirs('./results')

    if not os.path.isdir('./results/text_only'):
        os.makedirs('./results/text_only')

    train_loader = torch.utils.data.DataLoader(
        datasets.MultiMNIST('./data', train=True, download=True,
                            transform=transforms.ToTensor(),
                            target_transform=charlist_tensor),
        batch_size=args.batch_size, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.MultiMNIST('./data', train=False, download=True, 
                            transform=transforms.ToTensor(),
                            target_transform=charlist_tensor),
        batch_size=args.batch_size, shuffle=True)

    vae = TextVAE(args.n_latents, use_cuda=args.cuda)
    if args.cuda:
        vae.cuda()

    optimizer = optim.Adam(vae.parameters(), lr=args.lr)

コード例 #5
0
    args = parser.parse_args()
    args.cuda = args.cuda and torch.cuda.is_available()

    if not os.path.isdir('./trained_models'):
        os.makedirs('./trained_models')

    if not os.path.isdir('./trained_models/image_only'):
        os.makedirs('./trained_models/image_only')

    if not os.path.isdir('./results'):
        os.makedirs('./results')

    if not os.path.isdir('./results/image_only'):
        os.makedirs('./results/image_only')

    train_loader = torch.utils.data.DataLoader(datasets.MultiMNIST(
        './data', train=True, download=True, transform=transforms.ToTensor()),
                                               batch_size=args.batch_size,
                                               shuffle=True)
    test_loader = torch.utils.data.DataLoader(datasets.MultiMNIST(
        './data', train=False, download=True, transform=transforms.ToTensor()),
                                              batch_size=args.batch_size,
                                              shuffle=True)

    vae = ImageVAE(n_latents=args.n_latents)
    if args.cuda:
        vae.cuda()

    optimizer = optim.Adam(vae.parameters(), lr=args.lr)

    def train(epoch):
        print('Using KL Lambda: {}'.format(kl_lambda))