score_out = 0 class_num = 101 if args.dataset=='UCF101' else 51 split_dir = 'ucfTrainTestlist' if args.dataset=='UCF101' else 'hmdbTrainTestlist' base_dir = '/home/ss/feats' if args.base_dir is None else args.base_dir feat_list = ['mixed_8_join']#,'mixed_7_join']#, 'top_cls_global_pool']#['mixed_7_join','mixed_8_join','mixed_10_join'] print(feat_list) # Data print('==> Preparing data..') #base_dir = '/home/ss/feats' trainset = datasets.UCF101_mixed_v3_dict( rootDict={'mixed_10_join':os.path.join(base_dir,args.dataset+'_rgb_mix10_v3_npz') ,'mixed_8_join' :os.path.join(base_dir,args.dataset+'_rgb_mix8_v3_npz') ,'mixed_7_join' :os.path.join(base_dir,args.dataset+'_rgb_mix7_v3_npz') # ,'top_cls_global_pool':os.path.join(base_dir,args.dataset+'_rgb_top_v3_npz') }, label=os.path.join(split_dir,'alllist.txt'), ext = '_rgb.npz', is_training=True, feat_list = feat_list, n = args.n ) #['top_cls_global_pool', 'mixed_7_join', 'fc_action', 'mixed_10_join'] trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=read_workers) testset = datasets.UCF101_mixed_v3_dict( rootDict={'mixed_10_join':os.path.join(base_dir,args.dataset+'_rgb_mix10_v3_npz') ,'mixed_8_join' :os.path.join(base_dir,args.dataset+'_rgb_mix8_v3_npz') ,'mixed_7_join' :os.path.join(base_dir,args.dataset+'_rgb_mix7_v3_npz') #'top_cls_global_pool':os.path.join(base_dir,args.dataset+'_rgb_top_v3') }, # rootDict={'mixed_10_join':'/media/ss/38cfe914-26f2-4a22-9cf1-bea9684775ac/lmy/temporal-segment-networks/data/UCF101_rgb_mix10_v3_npz',
parser.add_argument('--spa', default='UCF101') parser.add_argument('--tim', default='UCF101') parser.add_argument('--split', default='1') args = parser.parse_args() class_num = 101 if args.dataset=='UCF101' else 51 split_dir = 'ucfTrainTestlist' if args.dataset=='UCF101' else 'hmdbTrainTestlist' base_dir = '../temporal-segment-networks/data/' feat_list = ['mixed_8_join','mixed_7_join']#['mixed_7_join','mixed_8_join','mixed_10_join'] testset = datasets.UCF101_mixed_v3_dict( rootDict={'mixed_10_join':os.path.join(base_dir,args.dataset+'_rgb_mix10_v3_npz'), 'mixed_8_join' :os.path.join(base_dir,args.dataset+'_rgb_mix8_v3_npz') , 'mixed_7_join' :os.path.join(base_dir,args.dataset+'_rgb_mix7_v3_npz')}, label=os.path.join(split_dir,'testlist0'+args.split+'.txt'), ext = '_rgb.npz', is_training=False, feat_list = feat_list ) def test_with_score(score): true_num = 0.0 ids = np.argmax(score, axis=1) for i in range(testset.__len__()): if testset.datas[i][1]==ids[i]: true_num += 1.0 return true_num/testset.__len__() if __name__ == '__main__': a = 0.0 acc_max, a_max = 0, 0 spa_score = np.load(args.spa)
split_dir = 'ucfTrainTestlist' if args.dataset=='UCF101' else 'hmdbTrainTestlist' base_dir = '/home/ss/feats' if args.base_dir is None else args.base_dir feat_list = ['mixed_8_join']#, 'top_cls_global_pool']#['mixed_7_join','mixed_8_join','mixed_10_join'] BATCH_SIZE=32 frame_id = args.img_id print(feat_list) # Data print('==> Preparing data..') #base_dir = '/home/ss/feats' showset = datasets.UCF101_mixed_v3_dict( rootDict={'mixed_10_join':os.path.join(base_dir,args.dataset+'_rgb_mix10_v3_npz') ,'mixed_8_join' :os.path.join(base_dir,args.dataset+'_rgb_mix8_v3_npz') ,'mixed_7_join' :os.path.join(base_dir,args.dataset+'_rgb_mix7_v3_npz') # ,'top_cls_global_pool':os.path.join(base_dir,args.dataset+'_rgb_top_v3_npz') }, label=os.path.join(split_dir,'part.txt'), ext = '_rgb.npz', is_training=False, feat_list = feat_list, n = args.n ) showloader = torch.utils.data.DataLoader(showset, batch_size=BATCH_SIZE, shuffle=False, num_workers=read_workers) dim = 2048 str_net = SpaNet(model_type='str', glo_channels=1280, loc_channels=768, out_channels=1, num_classes=class_num, drop_rate=drop_rate, out_type=args.type, n=args.n) old_net = SpaNet(model_type='old', glo_channels=1280, loc_channels=8, out_channels=1, num_classes=class_num, drop_rate=drop_rate, out_type=args.type, n=args.n) if use_cuda: str_net.cuda() str_net = torch.nn.DataParallel(str_net, device_ids=range(torch.cuda.device_count())) old_net.cuda() old_net = torch.nn.DataParallel(old_net, device_ids=range(torch.cuda.device_count()))
CenLoss_a = 0.001 drop_rate = 0.5 epoch_num = 50 read_workers = 16 feat_list = ['mixed_8_join', 'mixed_7_join'] #['mixed_7_join','mixed_8_join','mixed_10_join'] print(feat_list) # Data print('==> Preparing data..') BaseDir = '/home/ss/feats' trainset = datasets.UCF101_mixed_v3_dict( rootDict={ 'mixed_10_join': os.path.join(BaseDir, 'UCF101_rgb_mix10_v3_npz'), 'mixed_8_join': os.path.join(BaseDir, 'UCF101_rgb_mix8_v3_npz'), 'mixed_7_join': os.path.join(BaseDir, 'UCF101_rgb_mix7_v3_npz') }, label='./ucfTrainTestlist/trainlist01.txt.top3', ext='_rgb.npz', is_training=True, feat_list=feat_list) #['top_cls_global_pool', 'mixed_7_join', 'fc_action', 'mixed_10_join'] trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=read_workers) testset = datasets.UCF101_mixed_v3_dict( rootDict={ 'mixed_10_join': os.path.join(BaseDir, 'UCF101_rgb_mix10_v3_npz'), 'mixed_8_join': os.path.join(BaseDir, 'UCF101_rgb_mix8_v3_npz'), 'mixed_7_join': os.path.join(BaseDir, 'UCF101_rgb_mix7_v3_npz')