コード例 #1
0
    def test(self, restore_model, save_dir):
        dataset = BasicDataset(data_list_file=self.dataset_config['data_list_file'], img_dir=self.dataset_config['img_dir'])
        save_name_list = dataset.data_list[:, 2]
        iterator = dataset.create_one_shot_iterator(dataset.data_list, num_parallel_calls=self.num_input_threads)
        batch_img0, batch_img1, batch_img2 = iterator.get_next()
        flow_fw, flow_bw = pyramid_processing(batch_img0, batch_img1, batch_img2, train=False, trainable=False, is_scale=True) 
        # For KITTI we set max_flow=256, while for Sintel we set max_flow=128
        flow_fw_color = flow_to_color(flow_fw['full_res'], mask=None, max_flow=256)
        flow_bw_color = flow_to_color(flow_bw['full_res'], mask=None, max_flow=256)
        
        restore_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) 
        saver = tf.train.Saver(var_list=restore_vars)
        sess = tf.Session()
        sess.run(tf.global_variables_initializer()) 
        sess.run(iterator.initializer) 
        saver.restore(sess, restore_model)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)           
        for i in range(dataset.data_num):
            np_flow_fw, np_flow_bw, np_flow_fw_color, np_flow_fw_color = sess.run([flow_fw['full_res'], flow_bw['full_res'], flow_fw_color, flow_bw_color])
            misc.imsave('%s/flow_fw_color_%s.png' % (save_dir, save_name_list[i]), np_flow_fw_color[0])
            misc.imsave('%s/flow_bw_color_%s.png' % (save_dir, save_name_list[i]), np_flow_bw_color[0])
            write_flo('%s/flow_fw_%s.flo' % (save_dir, save_name_list[i]), np_flow_fw[0])
            write_flo('%s/flow_bw_%s.flo' % (save_dir, save_name_list[i]), np_flow_bw[0])
            print('Finish %d/%d' % (i, dataset.data_num))    
         
        

        
        
    

        
            
              
コード例 #2
0
    def generate_fake_flow_occlusion(self, restore_model, save_dir):
        dataset = BasicDataset(data_list_file=self.dataset_config['data_list_file'], img_dir=self.dataset_config['img_dir'])
        save_name_list = dataset.data_list[:, 5]
        iterator = dataset.create_one_shot_five_frame_iterator(dataset.data_list, num_parallel_calls=self.num_input_threads)

        batch_img0, batch_img1, batch_img2, batch_img3, batch_img4 = iterator.get_next()
        flow_fw_12, flow_bw_10, flow_fw_23, flow_bw_21, flow_fw_34, flow_bw_32 = pyramid_processing_five_frame(batch_img0, batch_img1, batch_img2, batch_img3, batch_img4,
            train=False, trainable=False, regularizer=None, is_scale=True)  

        occ_fw_12, occ_bw_21 = occlusion(flow_fw_12['full_res'], flow_bw_21['full_res'])
        occ_fw_23, occ_bw_32 = occlusion(flow_fw_23['full_res'], flow_bw_32['full_res'])

        flow_fw_12_full_res = flow_fw_12['full_res'] * 64. + 32768
        flow_occ_12_fw = tf.concat([flow_fw_12_full_res, occ_fw_12], -1)
        flow_occ_12_fw = tf.cast(flow_occ_12_fw, tf.uint16)
        flow_bw_21_full_res = flow_bw_21['full_res'] * 64. + 32768
        flow_occ_21_bw = tf.concat([flow_bw_21_full_res, occ_bw_21], -1)
        flow_occ_21_bw = tf.cast(flow_occ_21_bw, tf.uint16)

        flow_fw_23_full_res = flow_fw_23['full_res'] * 64. + 32768
        flow_occ_23_fw = tf.concat([flow_fw_23_full_res, occ_fw_23], -1)
        flow_occ_23_fw = tf.cast(flow_occ_23_fw, tf.uint16)
        flow_bw_32_full_res = flow_bw_32['full_res'] * 64. + 32768
        flow_occ_32_bw = tf.concat([flow_bw_32_full_res, occ_bw_32], -1)
        flow_occ_32_bw = tf.cast(flow_occ_32_bw, tf.uint16)
        
        restore_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) 
        saver = tf.train.Saver(var_list=restore_vars)
        sess = tf.Session()
        sess.run(tf.global_variables_initializer()) 
        sess.run(iterator.initializer) 
        saver.restore(sess, restore_model)
        #save_dir = '/'.join([self.save_dir, 'sample', self.model_name])
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)           
        for i in range(dataset.data_num):
            flow_occ_12, flow_occ_21, flow_occ_23, flow_occ_32 = sess.run([flow_occ_12_fw, flow_occ_21_bw, flow_occ_23_fw, flow_occ_32_bw])
            
            # opencv read and save image as bgr format, here we change rgb to bgr
            np_flow_occ_12_fw = rgb_bgr(flow_occ_12[0])
            np_flow_occ_21_bw = rgb_bgr(flow_occ_21[0])
            np_flow_occ_12_fw = np_flow_occ_12_fw.astype(np.uint16)
            np_flow_occ_21_bw = np_flow_occ_21_bw.astype(np.uint16)

            np_flow_occ_23_fw = rgb_bgr(flow_occ_23[0])
            np_flow_occ_32_bw = rgb_bgr(flow_occ_32[0])
            np_flow_occ_23_fw = np_flow_occ_23_fw.astype(np.uint16)
            np_flow_occ_32_bw = np_flow_occ_32_bw.astype(np.uint16)
            
            cv2.imwrite('%s/flow_occ_12_fw_%s.png' % (save_dir, save_name_list[i]), np_flow_occ_12_fw)
            cv2.imwrite('%s/flow_occ_21_bw_%s.png' % (save_dir, save_name_list[i]), np_flow_occ_21_bw)
            cv2.imwrite('%s/flow_occ_23_fw_%s.png' % (save_dir, save_name_list[i]), np_flow_occ_23_fw)
            cv2.imwrite('%s/flow_occ_32_bw_%s.png' % (save_dir, save_name_list[i]), np_flow_occ_32_bw)
            print('Finish %d/%d' % (i, dataset.data_num))            
コード例 #3
0
    def test(self, restore_model, save_dir, is_normalize_img=True, prefix=''):
        dataset = BasicDataset(data_list_file=self.dataset_config['data_list_file'], img_dir=self.dataset_config['img_dir'] + prefix, is_normalize_img=is_normalize_img)
        save_name_list = dataset.data_list[:, -1]
        iterator = dataset.create_one_shot_iterator(dataset.data_list, num_parallel_calls=self.num_input_threads)
        batch_img0, batch_img1, batch_img2 = iterator.get_next()
        img_shape = tf.shape(batch_img0)
        h = img_shape[1]
        w = img_shape[2]
        
        new_h = tf.where(tf.equal(tf.mod(h, 64), 0), h, (tf.to_int32(tf.floor(h / 64) + 1)) * 64)
        new_w = tf.where(tf.equal(tf.mod(w, 64), 0), w, (tf.to_int32(tf.floor(w / 64) + 1)) * 64)
        
        batch_img0 = tf.image.resize_images(batch_img0, [new_h, new_w], method=1, align_corners=True)
        batch_img1 = tf.image.resize_images(batch_img1, [new_h, new_w], method=1, align_corners=True)
        batch_img2 = tf.image.resize_images(batch_img2, [new_h, new_w], method=1, align_corners=True)
        
        flow_fw, flow_bw = pyramid_processing(batch_img0, batch_img1, batch_img2, train=False, trainable=False, is_scale=True) 
        flow_fw['full_res'] = flow_resize(flow_fw['full_res'], [h, w], method=1)
        flow_bw['full_res'] = flow_resize(flow_bw['full_res'], [h, w], method=1)
        
        flow_fw_color = flow_to_color(flow_fw['full_res'], mask=None, max_flow=256)
        flow_bw_color = flow_to_color(flow_bw['full_res'], mask=None, max_flow=256)
        
        restore_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) 
        saver = tf.train.Saver(var_list=restore_vars)
        sess = tf.Session()
        sess.run(tf.global_variables_initializer()) 
        sess.run(iterator.initializer) 
        saver.restore(sess, restore_model)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)           
        for i in range(dataset.data_num):
            np_flow_fw, np_flow_bw, np_flow_fw_color, np_flow_bw_color = sess.run([flow_fw['full_res'], flow_bw['full_res'], flow_fw_color, flow_bw_color])
            misc.imsave(('%s/' + '%s.png') % (save_dir, save_name_list[i]), np_flow_fw_color[0])
            # misc.imsave(('%s/' + prefix + '_%s.png') % (save_dir, save_name_list[i]), np_flow_fw_color[0])
            # misc.imsave(('%s/' + prefix + '_flow_fw_color_%s.png') % (save_dir, save_name_list[i]), np_flow_fw_color[0])
            # misc.imsave(('%s/' + prefix + '_flow_bw_color_%s.png') % (save_dir, save_name_list[i]), np_flow_bw_color[0])
            # write_flo('%s/flow_fw_%s.flo' % (save_dir, save_name_list[i]), np_flow_fw[0])
            # write_flo('%s/flow_bw_%s.flo' % (save_dir, save_name_list[i]), np_flow_bw[0])
            print('Finish %d/%d' % (i+1, dataset.data_num))    
         
        

        
        
    

        
            
              
コード例 #4
0
 def create_dataset_and_iterator(self, training_mode='no_self_supervision'):
     if training_mode=='no_self_supervision':
         dataset = BasicDataset(crop_h=self.dataset_config['crop_h'], 
                                crop_w=self.dataset_config['crop_w'],
                                batch_size=self.batch_size_per_gpu,
                                data_list_file=self.dataset_config['data_list_file'],
                                img_dir=self.dataset_config['img_dir'])
         iterator = dataset.create_batch_iterator(data_list=dataset.data_list, batch_size=dataset.batch_size,
             shuffle=True, buffer_size=self.buffer_size, num_parallel_calls=self.num_input_threads)   
     elif training_mode == 'self_supervision':
         dataset = BasicDataset(crop_h=self.dataset_config['crop_h'], 
                                crop_w=self.dataset_config['crop_w'],
                                batch_size=self.batch_size_per_gpu,
                                data_list_file=self.dataset_config['data_list_file'],
                                img_dir=self.dataset_config['img_dir'],
                fake_flow_occ_dir=self.self_supervision_config['fake_flow_occ_dir'],
                superpixel_dir=self.dataset_config['superpixel_dir'])
         iterator = dataset.create_batch_distillation_iterator(data_list=dataset.data_list, batch_size=dataset.batch_size,
             shuffle=True, buffer_size=self.buffer_size, num_parallel_calls=self.num_input_threads) 
     else:
         raise ValueError('Invalid training_mode. Training_mode should be one of {no_self_supervision, self_supervision}')
     return dataset, iterator
コード例 #5
0
def train_net(noise_fraction, 
              lr=1e-3,
              momentum=0.9, 
              batch_size=128,
              dir_img='ISIC_2019_Training_Input/',
              save_cp=True,
              dir_checkpoint='checkpoints/ISIC_2019_Training_Input/',
              epochs=10):

    train = BasicDataset(dir_img, noise_fraction, mode='train')
    test = BasicDataset(dir_img, noise_fraction, mode='test')
    val = BasicDataset(dir_img, noise_fraction, mode='val')
    # n_test = int(len(dataset) * test_percent)
    # n_train = len(dataset) - n_val
    # train, test = random_split(dataset, [n_train, n_test])
    data_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
    test_loader = DataLoader(test, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True)
    val_loader = DataLoader(val, batch_size=5, shuffle=False, num_workers=8, pin_memory=True)
    
    # data_loader = get_mnist_loader(hyperparameters['batch_size'], classes=[9, 4], proportion=0.995, mode="train")
    # test_loader = get_mnist_loader(hyperparameters['batch_size'], classes=[9, 4], proportion=0.5, mode="test")

    val_data, val_labels = next(iter(val_loader))
    val_data = to_var(val_data, requires_grad=False)
    val_labels = to_var(val_labels, requires_grad=False)

    data = iter(data_loader)
    
    net, opt = build_model(lr)
    plot_step = 100
    accuracy_log = []

    logging.info(f'''Starting training:
        Epochs:          {epochs}
        Batch size:      {batch_size}
        Learning rate:   {lr}
        Checkpoints:     {save_cp}
        Noise fraction:  {noise_fraction}
        Image dir:       {dir_img}
    ''')

    for epoch in range(epochs):
        net.train()
        for i in tqdm(range(int(len(train)/batch_size))):
            # Line 2 get batch of data
            image, labels = next(data)
            try:
            image, labels = next(data)
            except StopIteration:
                data = iter(data_loader)
                image, labels = next(data)
            # image, labels = next(iter(data_loader))
            # since validation data is small I just fixed them instead of building an iterator
            # initialize a dummy network for the meta learning of the weights
            meta_net = model.resnet101(pretrained=False, num_classes=9)
            meta_net.load_state_dict(net.state_dict())

            if torch.cuda.is_available():
                meta_net.cuda()

            image = to_var(image, requires_grad=False)
            labels = to_var(labels, requires_grad=False)

            # Lines 4 - 5 initial forward pass to compute the initial weighted loss
            # with torch.no_grad():
                # print(image.shape)
            y_f_hat = meta_net(image)
            
            labels = labels.float()
            cost = F.binary_cross_entropy_with_logits(y_f_hat, labels, reduce=False)
            # print('cost:', cost)
            eps = to_var(torch.zeros(cost.size()))
            # print('eps: ', eps)
            l_f_meta = torch.sum(cost * eps)

            meta_net.zero_grad()

            # Line 6 perform a parameter update
            grads = torch.autograd.grad(l_f_meta, (meta_net.params()), create_graph=True, allow_unused=True)
            meta_net.update_params(lr, source_params=grads)
            
            # Line 8 - 10 2nd forward pass and getting the gradients with respect to epsilon
            # with torch.no_grad():
            y_g_hat = meta_net(val_data)

            val_labels = val_labels.float()
            l_g_meta = F.binary_cross_entropy_with_logits(y_g_hat, val_labels)

            grad_eps = torch.autograd.grad(l_g_meta, eps, only_inputs=True)[0]
            
            # Line 11 computing and normalizing the weights
            w_tilde = torch.clamp(-grad_eps, min=0)
            norm_c = torch.sum(w_tilde)

            if norm_c != 0:
                w = w_tilde / norm_c
            else:
                w = w_tilde

            # Lines 12 - 14 computing for the loss with the computed weights
            # and then perform a parameter update
            # with torch.no_grad():
            y_f_hat = net(image)

            labels = labels.float()
            cost = F.binary_cross_entropy_with_logits(y_f_hat, labels, reduce=False)
            l_f = torch.sum(cost * w)

            opt.zero_grad()
            l_f.backward()
            opt.step()
            
            if i % plot_step == 0:
                net.eval()

                acc = []
                for i, (test_img, test_label) in enumerate(test_loader):
                    test_img = to_var(test_img, requires_grad=False)
                    test_label = to_var(test_label, requires_grad=False)

                    with torch.no_grad():
                        output = net(test_img)
                    predicted = (F.sigmoid(output) > 0.5)
                    # print(type(predicted))
                    # predicted = to_var(predicted, requires_grad=False)
                    # print(type(predicted))
                    # test_label = test_label.float()

                    # print(type((predicted == test_label).float()))
                    acc.append((predicted.float() == test_label.float()).float())

                accuracy = torch.cat(acc, dim=0).mean()
                accuracy_log.append(np.array([i, accuracy])[None])
                acc_log = np.concatenate(accuracy_log, axis=0)
                
            if save_cp:
                try:
                    os.mkdir(dir_checkpoint)
                    logging.info('Created checkpoint directory')
                except OSError:
                    pass
                torch.save(net.state_dict(),
                           dir_checkpoint + f'CP_epoch{epoch + 1}.pth')
                logging.info(f'Checkpoint {epoch + 1} saved !')

        # return accuracy
    return np.mean(acc_log[-6:-1, 1])
コード例 #6
0
    def eval(self, restore_model, save_dir, is_normalize_img=True):
        from test_datasets_eval import BasicDataset
        from error_metrics import flow_error_avg, outlier_pct, merge_dictionaries
        dataset = BasicDataset(data_list_file=self.dataset_config['data_list_file'], img_dir=self.dataset_config['img_dir'], is_normalize_img=is_normalize_img)
        save_name_list = dataset.data_list[:, -1]
        iterator = dataset.create_one_shot_iterator(dataset.data_list, num_parallel_calls=self.num_input_threads)
        batch_img0, batch_img1, batch_img2, flow_noc, flow_occ, mask_noc, mask_occ = iterator.get_next()
        img_shape = tf.shape(batch_img0)
        h = img_shape[1]
        w = img_shape[2]
        
        new_h = tf.where(tf.equal(tf.mod(h, 64), 0), h, (tf.to_int32(tf.floor(h / 64) + 1)) * 64)
        new_w = tf.where(tf.equal(tf.mod(w, 64), 0), w, (tf.to_int32(tf.floor(w / 64) + 1)) * 64)
        
        batch_img0 = tf.image.resize_images(batch_img0, [new_h, new_w], method=1, align_corners=True)
        batch_img1 = tf.image.resize_images(batch_img1, [new_h, new_w], method=1, align_corners=True)
        batch_img2 = tf.image.resize_images(batch_img2, [new_h, new_w], method=1, align_corners=True)
        
        flow_fw, _ = pyramid_processing(batch_img0, batch_img1, batch_img2, train=False, trainable=False, is_scale=True) 
        flow_fw['full_res'] = flow_resize(flow_fw['full_res'], [h, w], method=1)       
        flow_fw_color = flow_to_color(flow_fw['full_res'], mask=None, max_flow=256)
        error_fw_color = flow_error_image(flow_fw['full_res'], flow_occ, mask_occ)
        errors = {}
        errors['EPE_noc'] = flow_error_avg(flow_noc, flow_fw['full_res'], mask_noc)
        errors['EPE_all'] = flow_error_avg(flow_occ, flow_fw['full_res'], mask_occ)
        errors['outliers_noc'] = outlier_pct(flow_noc, flow_fw['full_res'], mask_noc)
        errors['outliers_all'] = outlier_pct(flow_occ, flow_fw['full_res'], mask_occ)
        restore_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) 
        saver = tf.train.Saver(var_list=restore_vars)
        sess = tf.Session()
        sess.run(tf.global_variables_initializer()) 
        sess.run(iterator.initializer) 
        saver.restore(sess, restore_model)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        sum_EPE_noc = 0.
        sum_EPE_all = 0.
        sum_outliers_noc = 0.
        sum_outliers_all = 0.
        for i in range(dataset.data_num):
            np_flow_fw, np_flow_fw_color, np_error_fw_color = sess.run([flow_fw['full_res'], flow_fw_color, error_fw_color])
            EPE_noc, EPE_all, outliers_noc, outliers_all = sess.run([errors['EPE_noc'], errors['EPE_all'], errors['outliers_noc'], errors['outliers_all']])
            sum_EPE_noc += EPE_noc
            sum_EPE_all += EPE_all
            sum_outliers_noc += outliers_noc
            sum_outliers_all += outliers_all

            misc.imsave('%s/%s_10.png' % (save_dir, save_name_list[i]), np_flow_fw_color[0])
            misc.imsave('%s/error_%s.png' % (save_dir, save_name_list[i]), np_error_fw_color[0])
            #write_flo('%s/flow_fw_%s.flo' % (save_dir, save_name_list[i]), np_flow_fw[0])
            print('Finish %d/%d' % (i+1, dataset.data_num))

        print("EPE_noc: %f, EPE_all: %f" % (sum_EPE_noc/dataset.data_num, sum_EPE_all/dataset.data_num))
        print("F1_noc: %f, F1_all: %f" % (sum_outliers_noc/dataset.data_num, sum_outliers_all/dataset.data_num))

        
        
    

        
            
              
コード例 #7
0

args = get_args()
net, opt = build_model(lr=args.lr)

net_losses = []
plot_step = 100
net_l = 0

smoothing_alpha = 0.9
accuracy_log = []

# data_loader = dl.get_mnist_loader(args.batch_size, classes=[9, 4], proportion=0.995, mode="train")
# test_loader = dl.get_mnist_loader(args.batch_size, classes=[9, 4], proportion=0.5, mode="test")

train = BasicDataset(imgs_dir=args.imgs_dir, mode='base')
test = BasicDataset(imgs_dir=args.imgs_dir, mode='test')

data_loader = DataLoader(train,
                         batch_size=args.batch_size,
                         shuffle=True,
                         num_workers=4,
                         pin_memory=True)
test_loader = DataLoader(test,
                         batch_size=args.batch_size,
                         shuffle=False,
                         num_workers=4,
                         pin_memory=True)

data = iter(data_loader)