help='Input size. ' 'channels x height x width (default: 1x3x224x224)') parser.add_argument('-speed', '--speed_test', action='store_true') parser.add_argument('--iteration', type=int, default=5000) parser.add_argument('-summary', '--summary', action='store_true') args = parser.parse_args() all_dev = parse_devices(args.devices) network = Network_Res50(config.num_classes, is_training=False) data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source, 'test_source': config.test_source} dataset = Cil(data_setting, 'test', None) if args.speed_test: device = all_dev[0] logger.info("=========DEVICE:%s SIZE:%s=========" % ( torch.cuda.get_device_name(device), args.input_size)) input_size = tuple(int(x) for x in args.input_size.split('x')) compute_speed(network, input_size, device, args.iteration) elif args.summary: input_size = tuple(int(x) for x in args.input_size.split('x')) stat(network, input_size) else: with torch.no_grad(): segmentor = SegEvaluator(dataset, config.num_classes, config.image_mean, config.image_std, network, config.eval_scale_array, config.eval_flip,
parser.add_argument('-speed', '--speed_test', action='store_true') parser.add_argument('--iteration', type=int, default=5000) parser.add_argument('-summary', '--summary', action='store_true') args = parser.parse_args() all_dev = parse_devices(args.devices) network = PSPNet(config.num_classes) data_setting = { 'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source, 'test_source': config.test_source } dataset = Cil(data_setting, 'val', None) if args.speed_test: device = all_dev[0] logger.info("=========DEVICE:%s SIZE:%s=========" % (torch.cuda.get_device_name(device), args.input_size)) input_size = tuple(int(x) for x in args.input_size.split('x')) compute_speed(network, input_size, device, args.iteration) elif args.summary: input_size = tuple(int(x) for x in args.input_size.split('x')) stat(network, input_size) else: with torch.no_grad(): segmentor = SegEvaluator(dataset, config.num_classes, config.image_mean, config.image_std, network, config.eval_scale_array,
help='Input size. ' 'channels x height x width (default: 1x3x224x224)') parser.add_argument('-speed', '--speed_test', action='store_true') parser.add_argument('--iteration', type=int, default=5000) parser.add_argument('-summary', '--summary', action='store_true') args = parser.parse_args() # all_dev = parse_devices(args.devices) #gpu all_dev = [0] #cpu #`n_iter=10`: During the test time, iteration count was increased to 10. network = CrfRnnNet(config.num_classes, n_iter=10) data_setting = { 'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source, 'test_source': config.test_source } # dataset = Cil(data_setting, 'test', None) dataset = Cil(data_setting, 'train', None) with torch.no_grad(): segmentor = SegEvaluator(dataset, config.num_classes, config.image_mean, config.image_std, network, config.eval_scale_array, config.eval_flip, all_dev, args.verbose, args.save_path) segmentor.run(config.snapshot_dir, args.epochs, config.val_log_file, config.link_val_log_file)