コード例 #1
0
def train():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    FloatTensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor

    dataset = MyDataset(data_path='D:/datasets/voc-custom/train.txt')
    dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=8, shuffle=True, num_workers=3, pin_memory=True, collate_fn=dataset.collate_fn
    )

    model = YoloNet().to(device)
    model.apply(weights_init_normal)

    optimizer = torch.optim.Adam(model.parameters())
    #scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

    for epoch in range(10):
        model.train()
        #scheduler.step()

        for batch_i, (imgs, targets) in enumerate(dataloader):
            imgs = Variable(imgs.to(device))
            targets = Variable(targets.to(device), requires_grad=False)
            print(imgs, targets)

            output, loss = model(imgs, targets)
            print(epoch,batch_i,loss.detach().cpu().item())

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        if epoch % 5 == 0:
            torch.save(model.state_dict(), f"yolov3_ckpt_%d.pth" % epoch)
コード例 #2
0
def evaluate_cnn_pytorch(model, batch_size):
    model.eval()
    test_data = MyDataset("digits/testDigits")
    test_loader = data.DataLoader(test_data,
                                  batch_size=batch_size,
                                  num_workers=0,
                                  shuffle=False)
    ok_predictions = 0
    for step, test in enumerate(test_loader):
        x = torch.clone(test[0]).float()
        target = torch.clone(test[1]).long()
        if torch.cuda.is_available():
            x = x.cuda()
            target = target.cuda()
        predictions = model(x)
        for i in range(len(predictions)):
            expected = torch.argmax(target[i])
            prediction = torch.argmax(predictions[i])
            if expected == prediction:
                ok_predictions += 1

    accuracy = round((ok_predictions / len(test_data)) * 100, 2)
    wrong_numbers = len(test_data) - ok_predictions
    print("Accuracy on test data: " + str(accuracy) + "%")
    print(f"wrong_numbers: {wrong_numbers}")

    return accuracy, wrong_numbers
コード例 #3
0
def run_performance_test(dataset: MyDataset, batch_size: int, epoch_num: int):
    loader = DataLoader(dataset, batch_size, num_workers=0, shuffle=True)

    print(f'Running for {dataset.name()}:')
    if isinstance(dataset, CachedDataset):
        # first epoch to load the data
        tic = perf_counter()
        for _ in loader:
            pass
        print(
            f'First epoch with caching the data took {perf_counter() - tic} seconds'
        )

        dataset.use_cache = True
        epoch_num -= 1

    ep1 = perf_counter()
    for i in range(epoch_num):
        for batch in loader:
            pass

    print(f'Mean epoch time is {(perf_counter() - ep1) / epoch_num} seconds, '
          f'dataset contains {len(dataset)} images, '
          f'with batch size of {batch_size}\n')
コード例 #4
0
ファイル: mytrain.py プロジェクト: shnhrtkyk/PointFlow
def main_worker(gpu, save_dir, ngpus_per_node, args):
    # basic setup
    cudnn.benchmark = True
    args.gpu = gpu
    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.distributed:
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)

    if args.log_name is not None:
        log_dir = "runs/%s" % args.log_name
    else:
        log_dir = "runs/time-%d" % time.time()

    if not args.distributed or (args.rank % ngpus_per_node == 0):
        writer = SummaryWriter(logdir=log_dir)
    else:
        writer = None

    if not args.use_latent_flow:  # auto-encoder only
        args.prior_weight = 0
        args.entropy_weight = 0

    # multi-GPU setup
    model = PointFlow(args)
    if args.distributed:  # Multiple processes, single GPU per process
        if args.gpu is not None:

            def _transform_(m):
                return nn.parallel.DistributedDataParallel(
                    m,
                    device_ids=[args.gpu],
                    output_device=args.gpu,
                    check_reduction=True)

            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            model.multi_gpu_wrapper(_transform_)
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = 0
        else:
            assert 0, "DistributedDataParallel constructor should always set the single device scope"
    elif args.gpu is not None:  # Single process, single GPU per process
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:  # Single process, multiple GPUs per process

        def _transform_(m):
            return nn.DataParallel(m)

        model = model.cuda()
        model.multi_gpu_wrapper(_transform_)

    # resume checkpoints
    start_epoch = 0
    optimizer = model.make_optimizer(args)
    if args.resume_checkpoint is None and os.path.exists(
            os.path.join(save_dir, 'checkpoint-latest.pt')):
        args.resume_checkpoint = os.path.join(
            save_dir, 'checkpoint-latest.pt')  # use the latest checkpoint
    if args.resume_checkpoint is not None:
        if args.resume_optimizer:
            model, optimizer, start_epoch = resume(
                args.resume_checkpoint,
                model,
                optimizer,
                strict=(not args.resume_non_strict))
        else:
            model, _, start_epoch = resume(args.resume_checkpoint,
                                           model,
                                           optimizer=None,
                                           strict=(not args.resume_non_strict))
        print('Resumed from: ' + args.resume_checkpoint)

    # initialize datasets and loaders
    tr_dataset = MyDataset(args.data_dir, istest=False)
    te_dataset = MyDataset(args.data_dir, istest=True)
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            tr_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(dataset=tr_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=0,
                                               pin_memory=True,
                                               sampler=train_sampler,
                                               drop_last=True,
                                               worker_init_fn=init_np_seed)
    test_loader = torch.utils.data.DataLoader(dataset=te_dataset,
                                              batch_size=args.batch_size,
                                              shuffle=False,
                                              num_workers=0,
                                              pin_memory=True,
                                              drop_last=False,
                                              worker_init_fn=init_np_seed)

    # save dataset statistics
    # if not args.distributed or (args.rank % ngpus_per_node == 0):
    #     np.save(os.path.join(save_dir, "train_set_mean.npy"), tr_dataset.all_points_mean)
    #     np.save(os.path.join(save_dir, "train_set_std.npy"), tr_dataset.all_points_std)
    #     np.save(os.path.join(save_dir, "train_set_idx.npy"), np.array(tr_dataset.shuffle_idx))
    #     np.save(os.path.join(save_dir, "val_set_mean.npy"), te_dataset.all_points_mean)
    #     np.save(os.path.join(save_dir, "val_set_std.npy"), te_dataset.all_points_std)
    #     np.save(os.path.join(save_dir, "val_set_idx.npy"), np.array(te_dataset.shuffle_idx))

    # load classification dataset if needed
    if args.eval_classification:
        from datasets import get_clf_datasets

        def _make_data_loader_(dataset):
            return torch.utils.data.DataLoader(dataset=dataset,
                                               batch_size=args.batch_size,
                                               shuffle=False,
                                               num_workers=0,
                                               pin_memory=True,
                                               drop_last=False,
                                               worker_init_fn=init_np_seed)

        clf_datasets = get_clf_datasets(args)
        clf_loaders = {
            k: [_make_data_loader_(ds) for ds in ds_lst]
            for k, ds_lst in clf_datasets.items()
        }
    else:
        clf_loaders = None

    # initialize the learning rate scheduler
    if args.scheduler == 'exponential':
        scheduler = optim.lr_scheduler.ExponentialLR(optimizer, args.exp_decay)
    elif args.scheduler == 'step':
        scheduler = optim.lr_scheduler.StepLR(optimizer,
                                              step_size=args.epochs // 2,
                                              gamma=0.1)
    elif args.scheduler == 'linear':

        def lambda_rule(ep):
            lr_l = 1.0 - max(0, ep - 0.5 * args.epochs) / float(
                0.5 * args.epochs)
            return lr_l

        scheduler = optim.lr_scheduler.LambdaLR(optimizer,
                                                lr_lambda=lambda_rule)
    else:
        assert 0, "args.schedulers should be either 'exponential' or 'linear'"

    # main training loop
    start_time = time.time()
    entropy_avg_meter = AverageValueMeter()
    latent_nats_avg_meter = AverageValueMeter()
    point_nats_avg_meter = AverageValueMeter()
    if args.distributed:
        print("[Rank %d] World size : %d" % (args.rank, dist.get_world_size()))

    print("Start epoch: %d End epoch: %d" % (start_epoch, args.epochs))
    for epoch in range(start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # adjust the learning rate
        if (epoch + 1) % args.exp_decay_freq == 0:
            scheduler.step(epoch=epoch)
            if writer is not None:
                writer.add_scalar('lr/optimizer', scheduler.get_lr()[0], epoch)

        # train for one epoch
        for bidx, data in enumerate(train_loader):
            idx_batch, tr_batch, te_batch = data['idx'], data[
                'train_points'], data['test_points']
            step = bidx + len(train_loader) * epoch
            model.train()
            inputs = tr_batch.cuda(args.gpu, non_blocking=True)
            out = model(inputs, optimizer, step, writer)
            entropy, prior_nats, recon_nats = out['entropy'], out[
                'prior_nats'], out['recon_nats']
            entropy_avg_meter.update(entropy)
            point_nats_avg_meter.update(recon_nats)
            latent_nats_avg_meter.update(prior_nats)
            if step % args.log_freq == 0:
                duration = time.time() - start_time
                start_time = time.time()
                print(
                    "[Rank %d] Epoch %d Batch [%2d/%2d] Time [%3.2fs] Entropy %2.5f LatentNats %2.5f PointNats %2.5f"
                    % (args.rank, epoch, bidx, len(train_loader), duration,
                       entropy_avg_meter.avg, latent_nats_avg_meter.avg,
                       point_nats_avg_meter.avg))

        # evaluate on the validation set
        # if not args.no_validation and (epoch + 1) % args.val_freq == 0:
        #     from utils import validate
        #     validate(test_loader, model, epoch, writer, save_dir, args, clf_loaders=clf_loaders)

        # save visualizations
        if (epoch + 1) % args.viz_freq == 0:
            # reconstructions
            model.eval()
            samples = model.reconstruct(inputs)
            results = []
            for idx in range(min(10, inputs.size(0))):
                res = visualize_point_clouds(samples[idx], inputs[idx], idx)
                results.append(res)
            res = np.concatenate(results, axis=1)
            scipy.misc.imsave(
                os.path.join(
                    save_dir, 'images',
                    'tr_vis_conditioned_epoch%d-gpu%s.png' %
                    (epoch, args.gpu)), res.transpose((1, 2, 0)))
            if writer is not None:
                writer.add_image('tr_vis/conditioned', torch.as_tensor(res),
                                 epoch)

            # samples
            if args.use_latent_flow:
                num_samples = min(10, inputs.size(0))
                num_points = inputs.size(1)
                _, samples = model.sample(num_samples, num_points)
                results = []
                for idx in range(num_samples):
                    res = visualize_point_clouds(samples[idx], inputs[idx],
                                                 idx)
                    results.append(res)
                res = np.concatenate(results, axis=1)
                scipy.misc.imsave(
                    os.path.join(
                        save_dir, 'images',
                        'tr_vis_conditioned_epoch%d-gpu%s.png' %
                        (epoch, args.gpu)), res.transpose((1, 2, 0)))
                if writer is not None:
                    writer.add_image('tr_vis/sampled', torch.as_tensor(res),
                                     epoch)

        # save checkpoints
        if not args.distributed or (args.rank % ngpus_per_node == 0):
            if (epoch + 1) % args.save_freq == 0:
                save(model, optimizer, epoch + 1,
                     os.path.join(save_dir, 'checkpoint-%d.pt' % epoch))
                save(model, optimizer, epoch + 1,
                     os.path.join(save_dir, 'checkpoint-latest.pt'))
コード例 #5
0
    args = p.parse_args()

    train_x, train_y, test_x, test_y = get_mnist()
    # normalize inputs to [0, 1]
    train_x /= 255
    test_x /= 255

    if torch.cuda.is_available():
        dev = torch.device('cuda')
    else:
        dev = torch.device('cpu')

    numbers = range(10)  # subset of numbers to train on
    train_mask = make_mask(train_y, numbers)
    xs = train_x[train_mask]
    dataset = MyDataset(xs)
    m = GAN(28 * 28,
            gen_input_dim=args.gen_input_dim,
            disc_learning_rate=args.disc_learning_rate,
            gen_learning_rate=args.gen_learning_rate,
            device=dev)
    m.fit(dataset,
          batch_size=args.batch_size,
          epochs=args.epochs,
          verbose=args.verbose)

    # generate digits and save
    if args.num_gen:
        noise = torch.randn(args.num_gen, args.gen_input_dim, device=dev)
        y = np.reshape(
            m.generate(noise).cpu().detach().numpy(), (args.num_gen, 28, 28))
コード例 #6
0
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            if verbose:
                print('epoch', epoch, cum_loss)

    def init_memory(self):
        return .01 * torch.randn(*self.memory_size)

    @torch.no_grad()
    def predict(self, x):
        yhat, self.memory = self.controller(x, self.memory)
        return yhat


if __name__ == '__main__':
    if torch.cuda.is_available():
        dev = torch.device('cuda')
    else:
        dev = torch.device('cpu')

    # Copy task from section 4.1
    vsize = 8
    x_train = get_rand_vector_sequence(1, 21, vsize=vsize, num_samples=100)
    y_train = deepcopy(x_train)
    dataset = MyDataset(x_train, y_train)
    mem_size = (100, 20)
    ntm = NeuralTuringMachine(
        vsize, vsize, mem_size, controller=FeedforwardController, device=dev)
    ntm.fit(dataset, verbose=True)
コード例 #7
0
def load_data(mode='cifar10', batch_size=16):
    assert mode in ['cifar10', 'mnist', 'faces'], '未知数据集'

    if mode == 'faces':
        root_path = 'G:/Dataset/celebAHQ/'

        image_list = [x for x in os.listdir(root_path) if is_image_file(x)]
        train_list = image_list[:int(0.8 * len(image_list))]
        test_list = image_list[int(0.8 * len(image_list)):]
        assert len(train_list) > 0
        assert len(test_list) >= 0

        trainset = MyDataset(train_list,
                             root_path,
                             input_height=None,
                             crop_height=None,
                             output_height=32,
                             is_mirror=True)
        testset = MyDataset(test_list,
                            root_path,
                            input_height=None,
                            crop_height=None,
                            output_height=32,
                            is_mirror=False)
        trainloader = MyDataLoader(trainset, batch_size)
        testloader = MyDataLoader(testset, batch_size, shuffle=False)
        classes = None

        return trainset, trainloader, testset, testloader, classes

    elif mode == 'cifar10':
        root_path = 'G:/Dataset/cifar10/'
        classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog',
                   'horse', 'ship', 'trunk')
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        trainset = torchvision.datasets.CIFAR10(root=root_path,
                                                train=True,
                                                download=False,
                                                transform=transform)
        testset = torchvision.datasets.CIFAR10(root=root_path,
                                               train=False,
                                               download=False,
                                               transform=transform)

    elif mode == 'mnist':
        root_path = 'G:/Dataset/mnist/'
        classes = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')
        transform = transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.5, ), (0.5, ))])
        trainset = torchvision.datasets.MNIST(root=root_path,
                                              train=True,
                                              download=False,
                                              transform=transform)
        testset = torchvision.datasets.MNIST(root=root_path,
                                             train=False,
                                             download=False,
                                             transform=transform)

    trainloader = DataLoader(trainset,
                             batch_size=batch_size,
                             shuffle=True,
                             pin_memory=True,
                             drop_last=False,
                             num_workers=2)
    testloader = DataLoader(trainset,
                            batch_size=batch_size,
                            shuffle=True,
                            pin_memory=True,
                            drop_last=False,
                            num_workers=2)

    return trainset, trainloader, testset, testloader, classes
コード例 #8
0
        epoch_num -= 1

    ep1 = perf_counter()
    for i in range(epoch_num):
        for batch in loader:
            pass

    print(f'Mean epoch time is {(perf_counter() - ep1) / epoch_num} seconds, '
          f'dataset contains {len(dataset)} images, '
          f'with batch size of {batch_size}\n')


if __name__ == '__main__':
    transform = tf.Compose([
        tf.Resize(512),  # rescale
        tf.RandomResizedCrop(256),
        tf.ToTensor(),  # convert to [0, 1] range
    ])

    slow_dataset = MyDataset('../data/wikiart',
                             transform=transform,
                             img_limit=1000)
    fast_dataset = CachedDataset('../data/wikiart',
                                 transform=transform,
                                 img_limit=1000,
                                 max_cache_size=1000)

    # run_performance_test(slow_dataset, batch_size=8, epoch_num=2)  # 25s per epoch for 1k images
    run_performance_test(fast_dataset, batch_size=8,
                         epoch_num=2)  # 10s per epoch after loading the data
コード例 #9
0
ファイル: train.py プロジェクト: liuziyuan827/test1
def train(opt):
    opt = dotDict(opt)

    if not os.path.exists(opt.checkpoints_dir):
        os.makedirs(opt.checkpoints_dir)

    if not os.path.exists(os.path.join(opt.out_dir, opt.run_name)):
        os.makedirs(os.path.join(opt.out_dir, opt.run_name))

    if torch.cuda.is_available() and not opt.cuda:
        print(
            "WARNING: You have a CUDA device, so you should probably run with --cuda"
        )

    ###### Definition of variables ######
    # Networks
    G0 = GeometrySynthesizer()
    G1 = Generator(opt.input_nc, opt.output_nc)
    G2 = Generator(opt.input_nc, opt.output_nc)
    D1 = Discriminator(opt.input_nc)
    D2 = Discriminator(opt.output_nc)

    if opt.cuda:
        G0.cuda()
        G1.cuda()
        G2.cuda()
        D1.cuda()
        D2.cuda()

    G1.apply(weights_init_normal)
    G2.apply(weights_init_normal)
    D2.apply(weights_init_normal)
    D1.apply(weights_init_normal)

    # Optimizers & LR schedulers
    optimizer_G0 = torch.optim.Adam(G0.parameters(),
                                    lr=opt.lr_GS,
                                    betas=(0.5, 0.999))
    optimizer_G = torch.optim.Adam(itertools.chain(G1.parameters(),
                                                   G2.parameters()),
                                   lr=opt.lr_AS,
                                   betas=(0.5, 0.999))
    optimizer_D1 = torch.optim.Adam(D1.parameters(),
                                    lr=opt.lr_AS,
                                    betas=(0.5, 0.999))
    optimizer_D2 = torch.optim.Adam(D2.parameters(),
                                    lr=opt.lr_AS,
                                    betas=(0.5, 0.999))

    if opt.G0_checkpoint is not None:
        G0 = load_G0_ckp(opt.G0_checkpoint, G0)

    if opt.AS_checkpoint is not None:
        _, G1, D1, G2, D2, optimizer_G, optimizer_D1, optimizer_D2 = load_AS_ckp(
            opt.AS_checkpoint, G1, D1, G2, D2, optimizer_G, optimizer_D1,
            optimizer_D2)

    if opt.resume_checkpoint is not None:
        opt.epoch, G0, G1, D1, G2, D2, optimizer_G0, optimizer_G, optimizer_D1, optimizer_D2 = load_ckp(
            opt.resume_checkpoint, G0, G1, D1, G2, D2, optimizer_G0,
            optimizer_G, optimizer_D1, optimizer_D2)

    lr_scheduler_G0 = torch.optim.lr_scheduler.LambdaLR(
        optimizer_G0,
        lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
    lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(
        optimizer_G,
        lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
    lr_scheduler_D1 = torch.optim.lr_scheduler.LambdaLR(
        optimizer_D1,
        lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
    lr_scheduler_D2 = torch.optim.lr_scheduler.LambdaLR(
        optimizer_D2,
        lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)

    # Inputs & targets memory allocation
    Tensor = torch.cuda.FloatTensor if opt.cuda else torch.Tensor
    background_t = Tensor(opt.batchSize, opt.input_nc, opt.size, opt.size)
    foregound_t = Tensor(opt.batchSize, opt.input_nc, opt.size, opt.size)
    real_t = Tensor(opt.batchSize, opt.output_nc, opt.size, opt.size)

    target_real = Variable(Tensor(opt.batchSize).fill_(1.0),
                           requires_grad=False)
    target_fake = Variable(Tensor(opt.batchSize).fill_(0.0),
                           requires_grad=False)

    composed_buffer = ReplayBuffer()
    fake_real_buffer = ReplayBuffer()
    fake_composed_buffer = ReplayBuffer()

    # Dataset loader
    transforms_dataset = [
        transforms.Resize(int(opt.size * 1.12), Image.BICUBIC),
        transforms.RandomCrop(opt.size),
        transforms.ToTensor(),
        # transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
    ]

    transforms_masks = [transforms.ToTensor()]

    text = TextUtils(opt.root, transforms_=transforms_masks)

    dataset = MyDataset(opt.root, transforms_=transforms_dataset)
    print("No. of Examples = ", len(dataset))
    dataloader = DataLoader(dataset,
                            batch_size=opt.batchSize,
                            shuffle=True,
                            num_workers=opt.n_cpu)

    # Loss plot
    logger = Logger(opt.n_epochs, len(dataloader),
                    os.path.join(opt.out_dir, opt.run_name), opt.epoch + 1)
    ###################################

    ###### Training ######
    for epoch in range(opt.epoch, opt.n_epochs):
        for i, batch in enumerate(dataloader):
            # Set model input
            background = Variable(background_t.copy_(batch['X']),
                                  requires_grad=True)
            # foreground = Variable(foregound_t.copy_(batch['Y']), requires_grad=True)
            real = Variable(real_t.copy_(batch['Z']), requires_grad=True)
            foreground = Variable(foregound_t.copy_(
                text.get_text_masks(opt.batchSize)),
                                  requires_grad=True)

            ###### Geometric Synthesizer ######
            composed_GS = G0(
                background,
                foreground)  # concatenate background and foreground object

            ## optimize G0 loss
            optimizer_G0.zero_grad()
            loss_G0 = criterion_discriminator(D2(composed_GS), target_fake)
            loss_G0.backward()
            optimizer_G0.step()

            ###### Appearance Synthesizer ######
            composed = composed_buffer.push_and_pop(composed_GS)
            ###### Generators G1 and G2 ######
            optimizer_G.zero_grad()

            ## Identity loss
            # G1(X) should equal X if X = real
            same_real = G1(real)
            loss_identity_1 = criterion_identity(real, same_real) * 5.0
            # G2(X) should equal X if X = composed
            same_composed = G2(composed)
            loss_identity_2 = criterion_identity(composed, same_composed) * 5.0

            loss_identity = loss_identity_1 + loss_identity_2

            ## GAN loss
            fake_real = G1(composed)
            loss_G1 = criterion_generator(D1(fake_real), target_real)

            fake_composed = G2(real)
            loss_G2 = criterion_generator(D2(fake_composed), target_real)

            loss_GAN = loss_G1 + loss_G2

            ## Cycle loss
            recovered_real = G1(fake_composed)
            loss_cycle_real = criterion_cycle(recovered_real, real) * 10.0

            recovered_composed = G2(fake_real)
            loss_cycle_composed = criterion_cycle(recovered_composed,
                                                  composed) * 10.0

            loss_cycle = loss_cycle_composed + loss_cycle_real

            # Total loss
            loss_G = loss_identity + loss_GAN + loss_cycle

            loss_G.backward()
            optimizer_G.step()
            #####################################

            ###### Discriminator D1 ######
            # real loss
            loss_D1_real = criterion_discriminator(D1(real), target_real)

            # fake loss
            new_fake_real = fake_real_buffer.push_and_pop(fake_real)
            loss_D1_fake = criterion_discriminator(D1(new_fake_real.detach()),
                                                   target_fake)

            loss_D1 = (loss_D1_real + loss_D1_fake) * 0.5
            loss_D1.backward()
            optimizer_D1.step()

            ###### Discriminator D2 ######
            # real loss
            new_composed = composed_buffer.push_and_pop(composed)
            loss_D2_real = criterion_discriminator(D2(new_composed.detach()),
                                                   target_real)

            # fake loss
            new_fake_composed = fake_composed_buffer.push_and_pop(
                fake_composed)
            loss_D2_fake = criterion_discriminator(
                D2(new_fake_composed.detach()), target_fake)

            loss_D2 = (loss_D2_real + loss_D2_fake) * 0.5
            loss_D2.backward()
            optimizer_D2.step()

            #####################################

            # Progress report (http://localhost:8097)
            losses = {
                'loss_G0': loss_G0,
                'loss_G': loss_G,
                'loss_D1': loss_D1,
                'loss_D2': loss_D2
            }
            images = {
                'background': background,
                'foreground': foreground,
                'real': real,
                'composed_GS': composed_GS,
                'composed': composed,
                'synthesized': fake_real,
                'adapted_real': fake_composed
            }

            logger.log(losses, images)

        # Update learning rates
        lr_scheduler_G.step()
        lr_scheduler_D1.step()
        lr_scheduler_D2.step()

        # Save models checkpoints
        checkpoint = {
            'epoch': epoch + 1,
            'state_dict': {
                "G0": G0.state_dict(),
                "G1": G1.state_dict(),
                "D1": D1.state_dict(),
                "G2": G2.state_dict(),
                "D2": D2.state_dict()
            },
            'optimizer': {
                "G0": optimizer_G0.state_dict(),
                "G": optimizer_G.state_dict(),
                "D1": optimizer_D1.state_dict(),
                "D2": optimizer_D2.state_dict()
            }
        }
        save_ckp(checkpoint,
                 os.path.join(opt.checkpoints_dir, opt.run_name + '.pth'))
コード例 #10
0
                self.optimizer.step()
            if verbose:
                print('epoch', epoch, cum_loss)

    @torch.no_grad()
    def generate(self, mean, var):
        return self.ae.decode(mean, var)

    @torch.no_grad()
    def latent_representation(self, x):
        return self.ae.encode(x)


if __name__ == '__main__':
    train_x, train_y, test_x, test_y = get_mnist()
    train_x /= 255
    test_x /= 255

    if torch.cuda.is_available():
        dev = torch.device('cuda')
    else:
        dev = torch.device('cpu')

    dataset = MyDataset(train_x)
    m = VAE(28 * 28, device=dev)
    m.fit(dataset, epochs=5, verbose=True)
    mean = torch.randn(1, m.latent_dim)
    var = 10 * torch.rand(1, m.latent_dim)
    im = m.generate(mean, var)
    plt.imshow(im.detach().numpy().reshape(28, 28))
コード例 #11
0
ファイル: train.py プロジェクト: bamps53/signate-library-ed
def main_worker(gpu, ngpus_per_node, args):
    args.gpu = gpu
    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            # args.rank = int(os.environ["RANK"])
            args.rank = 1
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)

    # Training dataset
    train_dataset = []
    if (args.dataset == 'VOC'):
        train_dataset = VOCDetection(root=args.dataset_root,
                                     transform=transforms.Compose([
                                         Normalizer(),
                                         Augmenter(),
                                         Resizer()
                                     ]))
        valid_dataset = VOCDetection(root=args.dataset_root,
                                     image_sets=[('2007', 'test')],
                                     transform=transforms.Compose(
                                         [Normalizer(),
                                          Resizer()]))
        args.num_class = train_dataset.num_classes()
    elif (args.dataset == 'COCO'):
        train_dataset = CocoDataset(root_dir=args.dataset_root,
                                    set_name='train2017',
                                    transform=transforms.Compose(
                                        [Normalizer(),
                                         Augmenter(),
                                         Resizer()]))
        valid_dataset = CocoDataset(root_dir=args.dataset_root,
                                    set_name='val2017',
                                    transform=transforms.Compose(
                                        [Normalizer(), Resizer()]))
        args.num_class = train_dataset.num_classes()

    elif (args.dataset == 'MyDataset'):
        train_dataset = MyDataset(root_dir=args.dataset_root,
                                  set_name='train',
                                  mode='train',
                                  transform=transforms.Compose(
                                      [Normalizer(),
                                       Augmenter(),
                                       Resizer()]))
        valid_dataset = MyDataset(root_dir=args.dataset_root,
                                  set_name='valid',
                                  mode='train',
                                  transform=transforms.Compose(
                                      [Normalizer(), Resizer()]))
        args.num_class = train_dataset.num_classes()

    train_loader = DataLoader(train_dataset,
                              batch_size=args.batch_size,
                              num_workers=args.workers,
                              shuffle=True,
                              collate_fn=collater,
                              pin_memory=True)
    valid_loader = DataLoader(valid_dataset,
                              batch_size=1,
                              num_workers=args.workers,
                              shuffle=False,
                              collate_fn=collater,
                              pin_memory=True)

    checkpoint = []
    if (args.resume is not None):
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
        params = checkpoint['parser']
        args.num_class = params.num_class
        args.network = params.network
        # args.start_epoch = checkpoint['epoch'] + 1
        args.start_epoch = 0
        del params

    model = EfficientDet(num_classes=args.num_class,
                         network=args.network,
                         W_bifpn=EFFICIENTDET[args.network]['W_bifpn'],
                         D_bifpn=EFFICIENTDET[args.network]['D_bifpn'],
                         D_class=EFFICIENTDET[args.network]['D_class'])
    if (args.resume is not None):
        # model.load_state_dict(checkpoint['state_dict'])
        pretrained_dict = checkpoint['state_dict']
        model_dict = model.state_dict()
        # remove the keys corresponing to the linear layer in the pretrained_dict
        pretrained_dict.pop(bbox_head.retina_cls.weight)
        pretrained_dict.pop(bbox_head.retina_cls.bias)
        # now update the model dict with pretrained dict
        model_dict.update(pretrained_dict)
    del checkpoint
    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(
                (args.workers + ngpus_per_node - 1) / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpu], find_unused_parameters=True)
            print('Run with DistributedDataParallel with divice_ids....')
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
            print('Run with DistributedDataParallel without device_ids....')
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:
        model = model.cuda()
        print('Run with DataParallel ....')
        model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) , optimizer, scheduler
    optimizer = optim.AdamW(model.parameters(), lr=args.lr)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     patience=3,
                                                     verbose=True)
    cudnn.benchmark = True

    for epoch in range(args.start_epoch, args.num_epoch):
        train(train_loader, model, scheduler, optimizer, epoch, args)

        if (epoch + 1) % 5 == 0:
            test(valid_dataset, model, epoch, args)

        state = {
            'epoch': epoch,
            'parser': args,
            'state_dict': get_state_dict(model)
        }

        torch.save(
            state,
            os.path.join(args.save_folder, args.dataset, args.network,
                         "checkpoint_{}.pth".format(epoch)))
コード例 #12
0
                    default=32,
                    help='Batch size training')
parser.add_argument('--saved_model_path',
                    type=str,
                    default='./dumps/',
                    help='saved model path')
parser.add_argument('--logs_path',
                    type=str,
                    default='./logs',
                    help='logs dir save score')

opt = parser.parse_args()
nll_loss = nn.NLLLoss()

if __name__ == '__main__':
    train_dataset = MyDataset(opt.train_text_path, opt.train_label_path,
                              opt.length)
    test_dataset = TestDataset(opt.valid_text_path,
                               opt.valid_label_path,
                               opt.length,
                               word2id=train_dataset.word2id,
                               id2word=train_dataset.id2word)

    if opt.model == 'GRU':
        model = GRUModel(
            vocab_size=train_dataset.vocab_size,
            embedding_size=opt.embedding_size,
            output_size=opt.output_dim,
            hidden_dim=opt.hidden_dim,
            n_layers=opt.n_layer,
        )
    elif opt.model == 'BiLSTM':
コード例 #13
0
def train(opt):
    opt = dotDict(opt)

    if not os.path.exists(opt.checkpoints_dir):
        os.makedirs(opt.checkpoints_dir)

    if not os.path.exists(os.path.join(opt.out_dir, opt.run_name)):
        os.makedirs(os.path.join(opt.out_dir, opt.run_name))

    if torch.cuda.is_available() and not opt.cuda:
        print(
            "WARNING: You have a CUDA device, so you should probably run with --cuda"
        )

    ###### Definition of variables ######
    # Networks
    G0 = GeometrySynthesizer()
    D2 = Discriminator(opt.output_nc)

    if opt.cuda:
        G0.cuda()
        D2.cuda()

    D2.apply(weights_init_normal)

    # Optimizers & LR schedulers
    optimizer_G0 = torch.optim.Adam(G0.parameters(),
                                    lr=opt.lr,
                                    betas=(0.5, 0.999))
    optimizer_D2 = torch.optim.Adam(D2.parameters(),
                                    lr=opt.lr,
                                    betas=(0.5, 0.999))

    if opt.resume_checkpoint is not None:
        opt.epoch, G0, D2, optimizer_G0, optimizer_D2 = load_GS_ckp(
            opt.resume_checkpoint, G0, D2, optimizer_G0, optimizer_D2)

    lr_scheduler_G0 = torch.optim.lr_scheduler.LambdaLR(
        optimizer_G0,
        lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
    lr_scheduler_D2 = torch.optim.lr_scheduler.LambdaLR(
        optimizer_D2,
        lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)

    # Inputs & targets memory allocation
    Tensor = torch.cuda.FloatTensor if opt.cuda else torch.Tensor
    background_t = Tensor(opt.batchSize, opt.input_nc, opt.size, opt.size)
    foregound_t = Tensor(opt.batchSize, opt.input_nc, opt.size, opt.size)
    real_t = Tensor(opt.batchSize, opt.output_nc, opt.size, opt.size)

    target_real = Variable(Tensor(opt.batchSize).fill_(1.0),
                           requires_grad=False)
    target_fake = Variable(Tensor(opt.batchSize).fill_(0.0),
                           requires_grad=False)

    composed_buffer = ReplayBuffer()

    # Dataset loader
    transforms_dataset = [
        transforms.Resize(int(opt.size * 1.12), Image.BICUBIC),
        transforms.RandomCrop(opt.size),
        transforms.ToTensor(),
        # transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
    ]

    transforms_masks = [transforms.ToTensor()]

    text = TextUtils(opt.root, transforms_=transforms_masks)

    dataset = MyDataset(opt.root, transforms_=transforms_dataset)
    print("No. of Examples = ", len(dataset))
    dataloader = DataLoader(dataset,
                            batch_size=opt.batchSize,
                            shuffle=True,
                            num_workers=opt.n_cpu)

    # Loss plot
    logger = Logger(opt.n_epochs, len(dataloader),
                    os.path.join(opt.out_dir, opt.run_name), opt.epoch + 1)
    ###################################

    ###### Training ######
    for epoch in range(opt.epoch, opt.n_epochs):
        for i, batch in enumerate(dataloader):
            # Set model input
            background = Variable(background_t.copy_(batch['X']),
                                  requires_grad=True)
            # foreground = Variable(foregound_t.copy_(batch['Y']), requires_grad=True)
            real = Variable(real_t.copy_(batch['Z']), requires_grad=True)
            foreground = Variable(foregound_t.copy_(
                text.get_text_masks(opt.batchSize)),
                                  requires_grad=True)

            ###### Geometric Synthesizer ######
            composed = G0(
                background,
                foreground)  # concatenate background and foreground object

            ## optimize G0 loss
            optimizer_G0.zero_grad()

            loss_G0 = criterion_discriminator(D2(composed), target_real)

            loss_G0.backward()
            optimizer_G0.step()

            ## optimize D2 Geometry loss
            optimizer_D2.zero_grad()

            # real loss
            loss_D2_real = criterion_discriminator(D2(real), target_real)
            # composed loss
            new_composed = composed_buffer.push_and_pop(composed)
            loss_D2_composed = criterion_discriminator(D2(new_composed),
                                                       target_fake)

            loss_D2 = (loss_D2_real + loss_D2_composed) * 0.5

            if i % 5 == 0:
                loss_D2.backward()
                optimizer_D2.step()

            # Progress report (http://localhost:8097)
            losses = {'loss_G0': loss_G0, 'loss_D2': loss_D2}
            images = {
                'background': background,
                'foreground': foreground,
                'real': real,
                'composed': composed
            }

            logger.log(losses, images)

        # Update learning rates
        lr_scheduler_G0.step()
        lr_scheduler_D2.step()

        # Save models checkpoints
        checkpoint = {
            'epoch': epoch + 1,
            'state_dict': {
                "G0": G0.state_dict(),
                "D2": D2.state_dict()
            },
            'optimizer': {
                "G0": optimizer_G0.state_dict(),
                "D2": optimizer_D2.state_dict()
            }
        }
        save_ckp(checkpoint,
                 os.path.join(opt.checkpoints_dir, opt.run_name + '.pth'))
コード例 #14
0
def train_cnn_pytorch():
    image_dim = 32
    hidden_dim = 200
    output_dim = 10
    kernel_dim = 3
    kernel_num = 64
    batch_size = 8
    lr = 0.01
    dp_rate = 0.3
    epochs = 1000

    best_result = [0, 0]
    no_update = 0

    # os.environ["CUDA_VISIBLE_DEVICES"] = 0
    print("Start training")
    model = CNN(batch_size=batch_size,
                input_dim=image_dim,
                hidden_dim=hidden_dim,
                output_dim=output_dim,
                kernel_num=kernel_num,
                kernel_dim=kernel_dim,
                dp_rate=dp_rate)
    if torch.cuda.is_available():
        model.cuda()
    optimizer = optim.SGD(model.parameters(), lr=lr)

    for epoch in range(epochs):
        train_data = MyDataset("digits/trainingDigits")
        train_loader = data.DataLoader(train_data,
                                       batch_size=batch_size,
                                       num_workers=0,
                                       shuffle=True)
        model.train()
        start = time.time()
        print(f"Epoch {epoch} start ")
        avg_loss = 0
        count = 0
        for step, input_data in enumerate(train_loader):
            x = torch.clone(input_data[0]).float()
            target = torch.clone(input_data[1]).long()
            if torch.cuda.is_available():
                x = x.cuda()
                target = target.cuda()
            prediction = model(x)
            loss = F.cross_entropy(prediction, target.argmax(dim=1))
            avg_loss += loss.item()
            count += 1
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        avg_loss /= len(train_data)
        end = time.time()
        print(
            f"Epoch {epoch} done, Train average loss: {avg_loss}, costing time: {end - start}"
        )

        if epoch % 50 == 0:
            accuracy, wrong_numbers = evaluate_cnn_pytorch(model, batch_size)
            if accuracy > best_result[0]:
                best_result[0] = accuracy
                best_result[1] = wrong_numbers
                no_update = 0
            else:
                no_update += 1
        if no_update >= 5:
            print("Best Accuracy on test data: " + str(best_result[0]) + "%")
            print(f"Best wrong_numbers: {best_result[1]}")
            exit()
    print("Best Accuracy on test data: " + str(best_result[0]) + "%")
    print(f"Best wrong_numbers: {best_result[1]}")
コード例 #15
0
def eval(valid_path):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    FloatTensor = torch.cuda.FloatTensor if torch.cuda.is_available(
    ) else torch.FloatTensor

    class_names = load_classes('D:/datasets/voc-custom/classes.names')

    model = YoloNet().to(device)
    model.load_state_dict(torch.load('yolov3_ckpt_10.pth'))
    model.eval()

    dataset = MyDataset(valid_path)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=8,
                                             shuffle=False,
                                             num_workers=1,
                                             collate_fn=dataset.collate_fn)
    labels = []
    total_metrics = []
    for batch_i, (imgs, targets) in enumerate(dataloader):
        labels += targets[:, 1].tolist()
        targets[:, 2:] = xywh2xyxy(targets[:, 2:]) * 416

        imgs = Variable(imgs.type(FloatTensor), requires_grad=False)

        with torch.no_grad():
            outputs, _ = model(imgs)
            outputs = nms(outputs)

        # 遍历每张图
        batch_metrics = []
        for img_i in range(len(outputs)):
            if outputs[img_i] is None:
                continue

            output = outputs[img_i]
            pred_boxes = output[:, :4]
            pred_scores = output[:, 4]
            pred_labels = output[:, -1]

            true_positives = np.zeros(pred_boxes.shape[0])

            target = targets[targets[:, 0] == img_i][:, 1:]
            target_labels = target[:, 0] if len(target) else []

            if len(target):
                detected_boxes = []  # 预测正确的标签框索引
                target_boxes = target[:, 1:]
                # 遍历每个预测框
                for pred_i, (pred_box, pred_label) in enumerate(
                        zip(pred_boxes, pred_labels)):
                    if len(detected_boxes) == len(target):
                        break
                    if pred_label not in target_labels:
                        continue
                    iou, box_index = cal_iou(pred_box.unsqueeze(0),
                                             target_boxes).max(0)
                    if iou >= 0.5 and box_index not in detected_boxes:
                        true_positives[pred_i] = 1
                        detected_boxes += [box_index]

            batch_metrics.append([true_positives, pred_scores, pred_labels])
        total_metrics += batch_metrics

        true_positives, pred_scores, pred_labels = [
            np.concatenate(x, 0) for x in list(zip(*sample_metrics))
        ]
        precision, recall, AP, f1, ap_class = ap_per_class(
            true_positives, pred_scores, pred_labels, labels)

        print("Average Precisions:")
        for i, c in enumerate(ap_class):
            print(f"+ Class '{c}' ({class_names[c]}) - AP: {AP[i]}")

        print(f"mAP: {AP.mean()}")