コード例 #1
0
ファイル: R_EA.py プロジェクト: vishruthb/darts-scale
def main(xargs, nas_bench):
  assert torch.cuda.is_available(), 'CUDA is not available.'
  torch.backends.cudnn.enabled   = True
  torch.backends.cudnn.benchmark = False
  torch.backends.cudnn.deterministic = True
  torch.set_num_threads( xargs.workers )
  prepare_seed(xargs.rand_seed)
  logger = prepare_logger(args)

  if xargs.dataset == 'cifar10':
    dataname = 'cifar10-valid'
  else:
    dataname = xargs.dataset
  if xargs.data_path is not None:
    train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
    split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
    cifar_split = load_config(split_Fpath, None, None)
    train_split, valid_split = cifar_split.train, cifar_split.valid
    logger.log('Load split file from {:}'.format(split_Fpath))
    config_path = 'configs/nas-benchmark/algos/R-EA.config'
    config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data    = train_data_v2
    search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
    # data loader
    train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
    valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
    logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
    extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
  else:
    config_path = 'configs/nas-benchmark/algos/R-EA.config'
    config = load_config(config_path, None, logger)
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
    extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}

  search_space = get_search_spaces('cell', xargs.search_space_name)
  random_arch = random_architecture_func(xargs.max_nodes, search_space)
  mutate_arch = mutate_arch_func(search_space)
  #x =random_arch() ; y = mutate_arch(x)
  x_start_time = time.time()
  logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
  logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget))
  history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info, dataname)
  logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_cost, time.time()-x_start_time))
  best_arch = max(history, key=lambda i: i.accuracy)
  best_arch = best_arch.arch
  logger.log('{:} best arch is {:}'.format(time_string(), best_arch))
  
  info = nas_bench.query_by_arch( best_arch )
  if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
  else           : logger.log('{:}'.format(info))
  logger.log('-'*100)
  logger.close()
  return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
コード例 #2
0
def main(xargs, nas_bench):
  assert torch.cuda.is_available(), 'CUDA is not available.'
  torch.backends.cudnn.enabled   = True
  torch.backends.cudnn.benchmark = False
  torch.backends.cudnn.deterministic = True
  torch.set_num_threads( xargs.workers )
  prepare_seed(xargs.rand_seed)
  logger = prepare_logger(args)

  assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
  train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
  split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
  cifar_split = load_config(split_Fpath, None, None)
  train_split, valid_split = cifar_split.train, cifar_split.valid
  logger.log('Load split file from {:}'.format(split_Fpath))
  config_path = 'configs/nas-benchmark/algos/R-EA.config'
  config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
  # To split data
  train_data_v2 = deepcopy(train_data)
  train_data_v2.transform = valid_data.transform
  valid_data    = train_data_v2
  search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
  # data loader
  train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
  valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
  logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
  logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
  extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}

  search_space = get_search_spaces('cell', xargs.search_space_name)
  random_arch = random_architecture_func(xargs.max_nodes, search_space)
  #x =random_arch() ; y = mutate_arch(x)
  logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
  best_arch, best_acc, total_time_cost, history = None, -1, 0, []
  #for idx in range(xargs.random_num):
  while total_time_cost < xargs.time_budget:
    arch = random_arch()
    accuracy, cost_time = train_and_eval(arch, nas_bench, extra_info)
    if total_time_cost + cost_time > xargs.time_budget: break
    else: total_time_cost += cost_time
    history.append(arch)
    if best_arch is None or best_acc < accuracy:
      best_acc, best_arch = accuracy, arch
    logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy))
  logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.'.format(time_string(), best_arch, best_acc, len(history), total_time_cost))
  
  info = nas_bench.query_by_arch( best_arch )
  if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
  else           : logger.log('{:}'.format(info))
  logger.log('-'*100)
  logger.close()
  return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
コード例 #3
0
def main(xargs, nas_bench):
    assert torch.cuda.is_available(), "CUDA is not available."
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    if xargs.dataset == "cifar10":
        dataname = "cifar10-valid"
    else:
        dataname = xargs.dataset
    if xargs.data_path is not None:
        train_data, valid_data, xshape, class_num = get_datasets(
            xargs.dataset, xargs.data_path, -1)
        split_Fpath = "configs/nas-benchmark/cifar-split.txt"
        cifar_split = load_config(split_Fpath, None, None)
        train_split, valid_split = cifar_split.train, cifar_split.valid
        logger.log("Load split file from {:}".format(split_Fpath))
        config_path = "configs/nas-benchmark/algos/R-EA.config"
        config = load_config(config_path, {
            "class_num": class_num,
            "xshape": xshape
        }, logger)
        # To split data
        train_data_v2 = deepcopy(train_data)
        train_data_v2.transform = valid_data.transform
        valid_data = train_data_v2
        search_data = SearchDataset(xargs.dataset, train_data, train_split,
                                    valid_split)
        # data loader
        train_loader = torch.utils.data.DataLoader(
            train_data,
            batch_size=config.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
            num_workers=xargs.workers,
            pin_memory=True,
        )
        valid_loader = torch.utils.data.DataLoader(
            valid_data,
            batch_size=config.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
            num_workers=xargs.workers,
            pin_memory=True,
        )
        logger.log(
            "||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}"
            .format(xargs.dataset, len(train_loader), len(valid_loader),
                    config.batch_size))
        logger.log("||||||| {:10s} ||||||| Config={:}".format(
            xargs.dataset, config))
        extra_info = {
            "config": config,
            "train_loader": train_loader,
            "valid_loader": valid_loader,
        }
    else:
        config_path = "configs/nas-benchmark/algos/R-EA.config"
        config = load_config(config_path, None, logger)
        logger.log("||||||| {:10s} ||||||| Config={:}".format(
            xargs.dataset, config))
        extra_info = {
            "config": config,
            "train_loader": None,
            "valid_loader": None
        }

    # nas dataset load
    assert xargs.arch_nas_dataset is not None and os.path.isfile(
        xargs.arch_nas_dataset)
    search_space = get_search_spaces("cell", xargs.search_space_name)
    cs = get_configuration_space(xargs.max_nodes, search_space)

    config2structure = config2structure_func(xargs.max_nodes)
    hb_run_id = "0"

    NS = hpns.NameServer(run_id=hb_run_id, host="localhost", port=0)
    ns_host, ns_port = NS.start()
    num_workers = 1

    # nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
    # logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
    workers = []
    for i in range(num_workers):
        w = MyWorker(
            nameserver=ns_host,
            nameserver_port=ns_port,
            convert_func=config2structure,
            dataname=dataname,
            nas_bench=nas_bench,
            time_budget=xargs.time_budget,
            run_id=hb_run_id,
            id=i,
        )
        w.run(background=True)
        workers.append(w)

    start_time = time.time()
    bohb = BOHB(
        configspace=cs,
        run_id=hb_run_id,
        eta=3,
        min_budget=12,
        max_budget=200,
        nameserver=ns_host,
        nameserver_port=ns_port,
        num_samples=xargs.num_samples,
        random_fraction=xargs.random_fraction,
        bandwidth_factor=xargs.bandwidth_factor,
        ping_interval=10,
        min_bandwidth=xargs.min_bandwidth,
    )

    results = bohb.run(xargs.n_iters, min_n_workers=num_workers)

    bohb.shutdown(shutdown_workers=True)
    NS.shutdown()

    real_cost_time = time.time() - start_time

    id2config = results.get_id2config_mapping()
    incumbent = results.get_incumbent_id()
    logger.log("Best found configuration: {:} within {:.3f} s".format(
        id2config[incumbent]["config"], real_cost_time))
    best_arch = config2structure(id2config[incumbent]["config"])

    info = nas_bench.query_by_arch(best_arch, "200")
    if info is None:
        logger.log("Did not find this architecture : {:}.".format(best_arch))
    else:
        logger.log("{:}".format(info))
    logger.log("-" * 100)

    logger.log("workers : {:.1f}s with {:} archs".format(
        workers[0].time_budget, len(workers[0].seen_archs)))
    logger.close()
    return logger.log_dir, nas_bench.query_index_by_arch(
        best_arch), real_cost_time
コード例 #4
0
def main(args):
    assert torch.cuda.is_available(), "CUDA is not available."
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True
    torch.set_num_threads(args.workers)

    prepare_seed(args.rand_seed)
    logger = prepare_logger(args)

    # prepare dataset
    train_data, valid_data, xshape, class_num = get_datasets(
        args.dataset, args.data_path, args.cutout_length)
    # train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(
        valid_data,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=True,
    )

    split_file_path = Path(args.split_path)
    assert split_file_path.exists(), "{:} does not exist".format(
        split_file_path)
    split_info = torch.load(split_file_path)

    train_split, valid_split = split_info["train"], split_info["valid"]
    assert (len(set(train_split).intersection(set(valid_split))) == 0
            ), "There should be 0 element that belongs to both train and valid"
    assert len(train_split) + len(valid_split) == len(
        train_data), "{:} + {:} vs {:}".format(len(train_split),
                                               len(valid_split),
                                               len(train_data))
    search_dataset = SearchDataset(args.dataset, train_data, train_split,
                                   valid_split)

    search_train_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=args.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
        pin_memory=True,
        num_workers=args.workers,
    )
    search_valid_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=args.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
        pin_memory=True,
        num_workers=args.workers,
    )
    search_loader = torch.utils.data.DataLoader(
        search_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
        sampler=None,
    )
    # get configures
    model_config = load_config(
        args.model_config,
        {
            "class_num": class_num,
            "search_mode": args.search_shape
        },
        logger,
    )

    # obtain the model
    search_model = obtain_search_model(model_config)
    MAX_FLOP, param = get_model_infos(search_model, xshape)
    optim_config = load_config(args.optim_config, {
        "class_num": class_num,
        "FLOP": MAX_FLOP
    }, logger)
    logger.log("Model Information : {:}".format(search_model.get_message()))
    logger.log("MAX_FLOP = {:} M".format(MAX_FLOP))
    logger.log("Params   = {:} M".format(param))
    logger.log("train_data : {:}".format(train_data))
    logger.log("search-data: {:}".format(search_dataset))
    logger.log("search_train_loader : {:} samples".format(len(train_split)))
    logger.log("search_valid_loader : {:} samples".format(len(valid_split)))
    base_optimizer, scheduler, criterion = get_optim_scheduler(
        search_model.base_parameters(), optim_config)
    arch_optimizer = torch.optim.Adam(
        search_model.arch_parameters(),
        lr=optim_config.arch_LR,
        betas=(0.5, 0.999),
        weight_decay=optim_config.arch_decay,
    )
    logger.log("base-optimizer : {:}".format(base_optimizer))
    logger.log("arch-optimizer : {:}".format(arch_optimizer))
    logger.log("scheduler      : {:}".format(scheduler))
    logger.log("criterion      : {:}".format(criterion))

    last_info, model_base_path, model_best_path = (
        logger.path("info"),
        logger.path("model"),
        logger.path("best"),
    )
    network, criterion = torch.nn.DataParallel(
        search_model).cuda(), criterion.cuda()

    # load checkpoint
    if last_info.exists() or (args.resume is not None and osp.isfile(
            args.resume)):  # automatically resume from previous checkpoint
        if args.resume is not None and osp.isfile(args.resume):
            resume_path = Path(args.resume)
        elif last_info.exists():
            resume_path = last_info
        else:
            raise ValueError("Something is wrong.")
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            resume_path))
        checkpoint = torch.load(resume_path)
        if "last_checkpoint" in checkpoint:
            last_checkpoint_path = checkpoint["last_checkpoint"]
            if not last_checkpoint_path.exists():
                logger.log("Does not find {:}, try another path".format(
                    last_checkpoint_path))
                last_checkpoint_path = (resume_path.parent /
                                        last_checkpoint_path.parent.name /
                                        last_checkpoint_path.name)
            assert (last_checkpoint_path.exists()
                    ), "can not find the checkpoint from {:}".format(
                        last_checkpoint_path)
            checkpoint = torch.load(last_checkpoint_path)
        start_epoch = checkpoint["epoch"] + 1
        search_model.load_state_dict(checkpoint["search_model"])
        scheduler.load_state_dict(checkpoint["scheduler"])
        base_optimizer.load_state_dict(checkpoint["base_optimizer"])
        arch_optimizer.load_state_dict(checkpoint["arch_optimizer"])
        valid_accuracies = checkpoint["valid_accuracies"]
        arch_genotypes = checkpoint["arch_genotypes"]
        discrepancies = checkpoint["discrepancies"]
        logger.log(
            "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch."
            .format(resume_path, start_epoch))
    else:
        logger.log(
            "=> do not find the last-info file : {:} or resume : {:}".format(
                last_info, args.resume))
        start_epoch, valid_accuracies, arch_genotypes, discrepancies = (
            0,
            {
                "best": -1
            },
            {},
            {},
        )

    # main procedure
    train_func, valid_func = get_procedures(args.procedure)
    total_epoch = optim_config.epochs + optim_config.warmup
    start_time, epoch_time = time.time(), AverageMeter()
    for epoch in range(start_epoch, total_epoch):
        scheduler.update(epoch, 0.0)
        search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min,
                             epoch * 1.0 / total_epoch)
        need_time = "Time Left: {:}".format(
            convert_secs2time(epoch_time.avg * (total_epoch - epoch), True))
        epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
        LRs = scheduler.get_lr()
        find_best = False

        logger.log(
            "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}"
            .format(
                time_string(),
                epoch_str,
                need_time,
                min(LRs),
                max(LRs),
                scheduler,
                search_model.tau,
                MAX_FLOP,
            ))

        # train for one epoch
        train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func(
            search_loader,
            network,
            criterion,
            scheduler,
            base_optimizer,
            arch_optimizer,
            optim_config,
            {
                "epoch-str": epoch_str,
                "FLOP-exp": MAX_FLOP * args.FLOP_ratio,
                "FLOP-weight": args.FLOP_weight,
                "FLOP-tolerant": MAX_FLOP * args.FLOP_tolerant,
            },
            args.print_freq,
            logger,
        )
        # log the results
        logger.log(
            "***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}"
            .format(
                time_string(),
                epoch_str,
                train_base_loss,
                train_arch_loss,
                train_acc1,
                train_acc5,
            ))
        cur_FLOP, genotype = search_model.get_flop("genotype",
                                                   model_config._asdict(),
                                                   None)
        arch_genotypes[epoch] = genotype
        arch_genotypes["last"] = genotype
        logger.log("[{:}] genotype : {:}".format(epoch_str, genotype))
        arch_info, discrepancy = search_model.get_arch_info()
        logger.log(arch_info)
        discrepancies[epoch] = discrepancy
        logger.log(
            "[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}"
            .format(
                epoch_str,
                cur_FLOP,
                cur_FLOP / MAX_FLOP,
                args.FLOP_ratio,
                np.mean(discrepancy),
            ))

        # if cur_FLOP/MAX_FLOP > args.FLOP_ratio:
        #  init_flop_weight = init_flop_weight * args.FLOP_decay
        # else:
        #  init_flop_weight = init_flop_weight / args.FLOP_decay

        # evaluate the performance
        if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
            logger.log("-" * 150)
            valid_loss, valid_acc1, valid_acc5 = valid_func(
                search_valid_loader,
                network,
                criterion,
                epoch_str,
                args.print_freq_eval,
                logger,
            )
            valid_accuracies[epoch] = valid_acc1
            logger.log(
                "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}"
                .format(
                    time_string(),
                    epoch_str,
                    valid_loss,
                    valid_acc1,
                    valid_acc5,
                    valid_accuracies["best"],
                    100 - valid_accuracies["best"],
                ))
            if valid_acc1 > valid_accuracies["best"]:
                valid_accuracies["best"] = valid_acc1
                arch_genotypes["best"] = genotype
                find_best = True
                logger.log(
                    "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}."
                    .format(
                        epoch,
                        valid_acc1,
                        valid_acc5,
                        100 - valid_acc1,
                        100 - valid_acc5,
                        model_best_path,
                    ))

        # save checkpoint
        save_path = save_checkpoint(
            {
                "epoch": epoch,
                "args": deepcopy(args),
                "valid_accuracies": deepcopy(valid_accuracies),
                "model-config": model_config._asdict(),
                "optim-config": optim_config._asdict(),
                "search_model": search_model.state_dict(),
                "scheduler": scheduler.state_dict(),
                "base_optimizer": base_optimizer.state_dict(),
                "arch_optimizer": arch_optimizer.state_dict(),
                "arch_genotypes": arch_genotypes,
                "discrepancies": discrepancies,
            },
            model_base_path,
            logger,
        )
        if find_best:
            copy_checkpoint(model_base_path, model_best_path, logger)
        last_info = save_checkpoint(
            {
                "epoch": epoch,
                "args": deepcopy(args),
                "last_checkpoint": save_path,
            },
            logger.path("info"),
            logger,
        )

        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    logger.log("")
    logger.log("-" * 100)
    last_config_path = logger.path("log") / "seed-{:}-last.config".format(
        args.rand_seed)
    configure2str(arch_genotypes["last"], str(last_config_path))
    logger.log("save the last config int {:} :\n{:}".format(
        last_config_path, arch_genotypes["last"]))

    best_arch, valid_acc = arch_genotypes["best"], valid_accuracies["best"]
    for key, config in arch_genotypes.items():
        if key == "last":
            continue
        FLOP_ratio = config["estimated_FLOP"] / MAX_FLOP
        if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant:
            if valid_acc < valid_accuracies[key]:
                best_arch, valid_acc = config, valid_accuracies[key]
    print("Best-Arch : {:}\nRatio={:}, Valid-ACC={:}".format(
        best_arch, best_arch["estimated_FLOP"] / MAX_FLOP, valid_acc))
    best_config_path = logger.path("log") / "seed-{:}-best.config".format(
        args.rand_seed)
    configure2str(best_arch, str(best_config_path))
    logger.log("save the last config int {:} :\n{:}".format(
        best_config_path, best_arch))
    logger.log("\n" + "-" * 200)
    logger.log(
        "Finish training/validation in {:}, and save final checkpoint into {:}"
        .format(convert_secs2time(epoch_time.sum, True), logger.path("info")))
    logger.close()
コード例 #5
0
def main(xargs, nas_bench):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    if xargs.dataset == 'cifar10':
        dataname = 'cifar10-valid'
    else:
        dataname = xargs.dataset
    if xargs.data_path is not None:
        train_data, valid_data, xshape, class_num = get_datasets(
            xargs.dataset, xargs.data_path, -1)
        split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
        cifar_split = load_config(split_Fpath, None, None)
        train_split, valid_split = cifar_split.train, cifar_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
        config_path = 'configs/nas-benchmark/algos/R-EA.config'
        config = load_config(config_path, {
            'class_num': class_num,
            'xshape': xshape
        }, logger)
        # To split data
        train_data_v2 = deepcopy(train_data)
        train_data_v2.transform = valid_data.transform
        valid_data = train_data_v2
        search_data = SearchDataset(xargs.dataset, train_data, train_split,
                                    valid_split)
        # data loader
        train_loader = torch.utils.data.DataLoader(
            train_data,
            batch_size=config.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
            num_workers=xargs.workers,
            pin_memory=True)
        valid_loader = torch.utils.data.DataLoader(
            valid_data,
            batch_size=config.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
            num_workers=xargs.workers,
            pin_memory=True)
        logger.log(
            '||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'
            .format(xargs.dataset, len(train_loader), len(valid_loader),
                    config.batch_size))
        logger.log('||||||| {:10s} ||||||| Config={:}'.format(
            xargs.dataset, config))
        extra_info = {
            'config': config,
            'train_loader': train_loader,
            'valid_loader': valid_loader
        }
    else:
        config_path = 'configs/nas-benchmark/algos/R-EA.config'
        config = load_config(config_path, None, logger)
        extra_info = {
            'config': config,
            'train_loader': None,
            'valid_loader': None
        }
        logger.log('||||||| {:10s} ||||||| Config={:}'.format(
            xargs.dataset, config))

    search_space = get_search_spaces('cell', xargs.search_space_name)
    policy = Policy(xargs.max_nodes, search_space)
    optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate)
    #optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate)
    eps = np.finfo(np.float32).eps.item()
    baseline = ExponentialMovingAverage(xargs.EMA_momentum)
    logger.log('policy    : {:}'.format(policy))
    logger.log('optimizer : {:}'.format(optimizer))
    logger.log('eps       : {:}'.format(eps))

    # nas dataset load
    logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))

    # REINFORCE
    # attempts = 0
    x_start_time = time.time()
    logger.log('Will start searching with time budget of {:} s.'.format(
        xargs.time_budget))
    total_steps, total_costs, trace = 0, 0, []
    #for istep in range(xargs.RL_steps):
    while total_costs < xargs.time_budget:
        start_time = time.time()
        log_prob, action = select_action(policy)
        arch = policy.generate_arch(action)
        reward, cost_time = train_and_eval(arch, nas_bench, extra_info,
                                           dataname)
        trace.append((reward, arch))
        # accumulate time
        if total_costs + cost_time < xargs.time_budget:
            total_costs += cost_time
        else:
            break

        baseline.update(reward)
        # calculate loss
        policy_loss = (-log_prob * (reward - baseline.value())).sum()
        optimizer.zero_grad()
        policy_loss.backward()
        optimizer.step()
        # accumulate time
        total_costs += time.time() - start_time
        total_steps += 1
        logger.log(
            'step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.
            format(total_steps, baseline.value(), policy_loss.item(),
                   policy.genotype()))
        #logger.log('----> {:}'.format(policy.arch_parameters))
        #logger.log('')

    # best_arch = policy.genotype() # first version
    best_arch = max(trace, key=lambda x: x[0])[1]
    logger.log(
        'REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.
        format(total_steps, total_costs,
               time.time() - x_start_time))
    info = nas_bench.query_by_arch(best_arch)
    if info is None:
        logger.log('Did not find this architecture : {:}.'.format(best_arch))
    else:
        logger.log('{:}'.format(info))
    logger.log('-' * 100)
    logger.close()
    return logger.log_dir, nas_bench.query_index_by_arch(best_arch)
コード例 #6
0
ファイル: DARTS-V1.py プロジェクト: z-x-yang/NAS-Projects
def main(xargs):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    train_data, valid_data, xshape, class_num = get_datasets(
        xargs.dataset, xargs.data_path, -1)
    if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
        split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
        cifar_split = load_config(split_Fpath, None, None)
        train_split, valid_split = cifar_split.train, cifar_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    elif xargs.dataset.startswith('ImageNet16'):
        split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(
            xargs.dataset)
        imagenet16_split = load_config(split_Fpath, None, None)
        train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    else:
        raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
    config_path = 'configs/nas-benchmark/algos/DARTS.config'
    config = load_config(config_path, {
        'class_num': class_num,
        'xshape': xshape
    }, logger)
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data = train_data_v2
    search_data = SearchDataset(xargs.dataset, train_data, train_split,
                                valid_split)
    # data loader
    search_loader = torch.utils.data.DataLoader(search_data,
                                                batch_size=config.batch_size,
                                                shuffle=True,
                                                num_workers=xargs.workers,
                                                pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(
        valid_data,
        batch_size=config.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
        num_workers=xargs.workers,
        pin_memory=True)
    logger.log(
        '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'
        .format(xargs.dataset, len(search_loader), len(valid_loader),
                config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(
        xargs.dataset, config))

    search_space = get_search_spaces('cell', xargs.search_space_name)
    model_config = dict2config(
        {
            'name': 'DARTS-V1',
            'C': xargs.channel,
            'N': xargs.num_cells,
            'max_nodes': xargs.max_nodes,
            'num_classes': class_num,
            'space': search_space
        }, None)
    search_model = get_cell_based_tiny_net(model_config)

    w_optimizer, w_scheduler, criterion = get_optim_scheduler(
        search_model.get_weights(), config)
    a_optimizer = torch.optim.Adam(search_model.get_alphas(),
                                   lr=xargs.arch_learning_rate,
                                   betas=(0.5, 0.999),
                                   weight_decay=xargs.arch_weight_decay)
    logger.log('w-optimizer : {:}'.format(w_optimizer))
    logger.log('a-optimizer : {:}'.format(a_optimizer))
    logger.log('w-scheduler : {:}'.format(w_scheduler))
    logger.log('criterion   : {:}'.format(criterion))
    flop, param = get_model_infos(search_model, xshape)
    #logger.log('{:}'.format(search_model))
    logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))

    last_info, model_base_path, model_best_path = logger.path(
        'info'), logger.path('model'), logger.path('best')
    network, criterion = torch.nn.DataParallel(
        search_model).cuda(), criterion.cuda()

    if last_info.exists():  # automatically resume from previous checkpoint
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            last_info))
        last_info = torch.load(last_info)
        start_epoch = last_info['epoch']
        checkpoint = torch.load(last_info['last_checkpoint'])
        genotypes = checkpoint['genotypes']
        valid_accuracies = checkpoint['valid_accuracies']
        search_model.load_state_dict(checkpoint['search_model'])
        w_scheduler.load_state_dict(checkpoint['w_scheduler'])
        w_optimizer.load_state_dict(checkpoint['w_optimizer'])
        a_optimizer.load_state_dict(checkpoint['a_optimizer'])
        logger.log(
            "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch."
            .format(last_info, start_epoch))
    else:
        logger.log("=> do not find the last-info file : {:}".format(last_info))
        start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}

    # start training
    start_time, epoch_time, total_epoch = time.time(), AverageMeter(
    ), config.epochs + config.warmup
    for epoch in range(start_epoch, total_epoch):
        w_scheduler.update(epoch, 0.0)
        need_time = 'Time Left: {:}'.format(
            convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
        epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
        logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(
            epoch_str, need_time, min(w_scheduler.get_lr())))

        search_w_loss, search_w_top1, search_w_top5 = search_func(
            search_loader, network, criterion, w_scheduler, w_optimizer,
            a_optimizer, epoch_str, xargs.print_freq, logger)
        logger.log(
            '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'
            .format(epoch_str, search_w_loss, search_w_top1, search_w_top5))
        valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
            valid_loader, network, criterion)
        logger.log(
            '[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'
            .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
        # check the best accuracy
        valid_accuracies[epoch] = valid_a_top1
        if valid_a_top1 > valid_accuracies['best']:
            valid_accuracies['best'] = valid_a_top1
            genotypes['best'] = search_model.genotype()
            find_best = True
        else:
            find_best = False

        genotypes[epoch] = search_model.genotype()
        logger.log('<<<--->>> The {:}-th epoch : {:}'.format(
            epoch_str, genotypes[epoch]))
        # save checkpoint
        save_path = save_checkpoint(
            {
                'epoch': epoch + 1,
                'args': deepcopy(xargs),
                'search_model': search_model.state_dict(),
                'w_optimizer': w_optimizer.state_dict(),
                'a_optimizer': a_optimizer.state_dict(),
                'w_scheduler': w_scheduler.state_dict(),
                'genotypes': genotypes,
                'valid_accuracies': valid_accuracies
            }, model_base_path, logger)
        last_info = save_checkpoint(
            {
                'epoch': epoch + 1,
                'args': deepcopy(args),
                'last_checkpoint': save_path,
            }, logger.path('info'), logger)
        if find_best:
            logger.log(
                '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'
                .format(epoch_str, valid_a_top1))
            copy_checkpoint(model_base_path, model_best_path, logger)
        with torch.no_grad():
            logger.log('arch-parameters :\n{:}'.format(
                nn.functional.softmax(search_model.arch_parameters,
                                      dim=-1).cpu()))
        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    logger.log('\n' + '-' * 100)
    # check the performance from the architecture dataset
    #if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
    #  logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
    #else:
    #  nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset)
    #  geno = genotypes[total_epoch-1]
    #  logger.log('The last model is {:}'.format(geno))
    #  info = nas_bench.query_by_arch( geno )
    #  if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
    #  else           : logger.log('{:}'.format(info))
    #  logger.log('-'*100)
    #  geno = genotypes['best']
    #  logger.log('The best model is {:}'.format(geno))
    #  info = nas_bench.query_by_arch( geno )
    #  if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
    #  else           : logger.log('{:}'.format(info))
    logger.close()
コード例 #7
0
def main(args):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    #torch.backends.cudnn.deterministic = True
    torch.set_num_threads(args.workers)

    prepare_seed(args.rand_seed)
    logger = prepare_logger(args)

    # prepare dataset
    train_data, valid_data, xshape, class_num = get_datasets(
        args.dataset, args.data_path, args.cutout_length)
    #train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(valid_data,
                                               batch_size=args.batch_size,
                                               shuffle=False,
                                               num_workers=args.workers,
                                               pin_memory=True)

    split_file_path = Path(args.split_path)
    assert split_file_path.exists(), '{:} does not exist'.format(
        split_file_path)
    split_info = torch.load(split_file_path)

    train_split, valid_split = split_info['train'], split_info['valid']
    assert len(
        set(train_split).intersection(set(valid_split))
    ) == 0, 'There should be 0 element that belongs to both train and valid'
    assert len(train_split) + len(valid_split) == len(
        train_data), '{:} + {:} vs {:}'.format(len(train_split),
                                               len(valid_split),
                                               len(train_data))
    search_dataset = SearchDataset(args.dataset, train_data, train_split,
                                   valid_split)

    search_train_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=args.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
        pin_memory=True,
        num_workers=args.workers)
    search_valid_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=args.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
        pin_memory=True,
        num_workers=args.workers)
    search_loader = torch.utils.data.DataLoader(search_dataset,
                                                batch_size=args.batch_size,
                                                shuffle=True,
                                                num_workers=args.workers,
                                                pin_memory=True,
                                                sampler=None)
    # get configures
    if args.ablation_num_select is None or args.ablation_num_select <= 0:
        model_config = load_config(args.model_config, {
            'class_num': class_num,
            'search_mode': 'shape'
        }, logger)
    else:
        model_config = load_config(
            args.model_config, {
                'class_num': class_num,
                'search_mode': 'ablation',
                'num_random_select': args.ablation_num_select
            }, logger)

    # obtain the model
    search_model = obtain_search_model(model_config)
    MAX_FLOP, param = get_model_infos(search_model, xshape)
    optim_config = load_config(args.optim_config, {
        'class_num': class_num,
        'FLOP': MAX_FLOP
    }, logger)
    logger.log('Model Information : {:}'.format(search_model.get_message()))
    logger.log('MAX_FLOP = {:} M'.format(MAX_FLOP))
    logger.log('Params   = {:} M'.format(param))
    logger.log('train_data : {:}'.format(train_data))
    logger.log('search-data: {:}'.format(search_dataset))
    logger.log('search_train_loader : {:} samples'.format(len(train_split)))
    logger.log('search_valid_loader : {:} samples'.format(len(valid_split)))
    base_optimizer, scheduler, criterion = get_optim_scheduler(
        search_model.base_parameters(), optim_config)
    arch_optimizer = torch.optim.Adam(search_model.arch_parameters(
        optim_config.arch_LR),
                                      lr=optim_config.arch_LR,
                                      betas=(0.5, 0.999),
                                      weight_decay=optim_config.arch_decay)
    logger.log('base-optimizer : {:}'.format(base_optimizer))
    logger.log('arch-optimizer : {:}'.format(arch_optimizer))
    logger.log('scheduler      : {:}'.format(scheduler))
    logger.log('criterion      : {:}'.format(criterion))

    last_info, model_base_path, model_best_path = logger.path(
        'info'), logger.path('model'), logger.path('best')
    network, criterion = torch.nn.DataParallel(
        search_model).cuda(), criterion.cuda()

    # load checkpoint
    if last_info.exists() or (args.resume is not None and osp.isfile(
            args.resume)):  # automatically resume from previous checkpoint
        if args.resume is not None and osp.isfile(args.resume):
            resume_path = Path(args.resume)
        elif last_info.exists():
            resume_path = last_info
        else:
            raise ValueError('Something is wrong.')
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            resume_path))
        checkpoint = torch.load(resume_path)
        if 'last_checkpoint' in checkpoint:
            last_checkpoint_path = checkpoint['last_checkpoint']
            if not last_checkpoint_path.exists():
                logger.log('Does not find {:}, try another path'.format(
                    last_checkpoint_path))
                last_checkpoint_path = resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name
            assert last_checkpoint_path.exists(
            ), 'can not find the checkpoint from {:}'.format(
                last_checkpoint_path)
            checkpoint = torch.load(last_checkpoint_path)
        start_epoch = checkpoint['epoch'] + 1
        #for key, value in checkpoint['search_model'].items():
        #  print('K {:} = Shape={:}'.format(key, value.shape))
        search_model.load_state_dict(checkpoint['search_model'])
        scheduler.load_state_dict(checkpoint['scheduler'])
        base_optimizer.load_state_dict(checkpoint['base_optimizer'])
        arch_optimizer.load_state_dict(checkpoint['arch_optimizer'])
        valid_accuracies = checkpoint['valid_accuracies']
        arch_genotypes = checkpoint['arch_genotypes']
        discrepancies = checkpoint['discrepancies']
        max_bytes = checkpoint['max_bytes']
        logger.log(
            "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch."
            .format(resume_path, start_epoch))
    else:
        logger.log(
            "=> do not find the last-info file : {:} or resume : {:}".format(
                last_info, args.resume))
        start_epoch, valid_accuracies, arch_genotypes, discrepancies, max_bytes = 0, {
            'best': -1
        }, {}, {}, {}

    # main procedure
    train_func, valid_func = get_procedures(args.procedure)
    total_epoch = optim_config.epochs + optim_config.warmup
    start_time, epoch_time = time.time(), AverageMeter()
    for epoch in range(start_epoch, total_epoch):
        scheduler.update(epoch, 0.0)
        search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min,
                             epoch * 1.0 / total_epoch)
        need_time = 'Time Left: {:}'.format(
            convert_secs2time(epoch_time.avg * (total_epoch - epoch), True))
        epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch)
        LRs = scheduler.get_lr()
        find_best = False

        logger.log(
            '\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}'
            .format(time_string(), epoch_str, need_time, min(LRs), max(LRs),
                    scheduler, search_model.tau, MAX_FLOP))

        # train for one epoch
        train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, \
                                                                                    {'epoch-str'  : epoch_str,        'FLOP-exp': MAX_FLOP * args.FLOP_ratio,
                                                                                     'FLOP-weight': args.FLOP_weight, 'FLOP-tolerant': MAX_FLOP * args.FLOP_tolerant}, args.print_freq, logger)
        # log the results
        logger.log(
            '***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}'
            .format(time_string(), epoch_str, train_base_loss, train_arch_loss,
                    train_acc1, train_acc5))
        cur_FLOP, genotype = search_model.get_flop('genotype',
                                                   model_config._asdict(),
                                                   None)
        arch_genotypes[epoch] = genotype
        arch_genotypes['last'] = genotype
        logger.log('[{:}] genotype : {:}'.format(epoch_str, genotype))
        # save the configuration
        configure2str(
            genotype,
            str(
                logger.path('log') /
                'seed-{:}-temp.config'.format(args.rand_seed)))
        arch_info, discrepancy = search_model.get_arch_info()
        logger.log(arch_info)
        discrepancies[epoch] = discrepancy
        logger.log(
            '[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}'
            .format(epoch_str, cur_FLOP, cur_FLOP / MAX_FLOP, args.FLOP_ratio,
                    np.mean(discrepancy)))

        #if cur_FLOP/MAX_FLOP > args.FLOP_ratio:
        #  init_flop_weight = init_flop_weight * args.FLOP_decay
        #else:
        #  init_flop_weight = init_flop_weight / args.FLOP_decay

        # evaluate the performance
        if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
            logger.log('-' * 150)
            valid_loss, valid_acc1, valid_acc5 = valid_func(
                search_valid_loader, network, criterion, epoch_str,
                args.print_freq_eval, logger)
            valid_accuracies[epoch] = valid_acc1
            logger.log(
                '***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}'
                .format(time_string(), epoch_str, valid_loss, valid_acc1,
                        valid_acc5, valid_accuracies['best'],
                        100 - valid_accuracies['best']))
            if valid_acc1 > valid_accuracies['best']:
                valid_accuracies['best'] = valid_acc1
                arch_genotypes['best'] = genotype
                find_best = True
                logger.log(
                    'Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.'
                    .format(epoch, valid_acc1, valid_acc5, 100 - valid_acc1,
                            100 - valid_acc5, model_best_path))
            # log the GPU memory usage
            #num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0
            num_bytes = torch.cuda.max_memory_cached(
                next(network.parameters()).device) * 1.0
            logger.log(
                '[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]'
                .format(
                    next(network.parameters()).device, int(num_bytes),
                    num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9))
            max_bytes[epoch] = num_bytes

        # save checkpoint
        save_path = save_checkpoint(
            {
                'epoch': epoch,
                'args': deepcopy(args),
                'max_bytes': deepcopy(max_bytes),
                'valid_accuracies': deepcopy(valid_accuracies),
                'model-config': model_config._asdict(),
                'optim-config': optim_config._asdict(),
                'search_model': search_model.state_dict(),
                'scheduler': scheduler.state_dict(),
                'base_optimizer': base_optimizer.state_dict(),
                'arch_optimizer': arch_optimizer.state_dict(),
                'arch_genotypes': arch_genotypes,
                'discrepancies': discrepancies,
            }, model_base_path, logger)
        if find_best: copy_checkpoint(model_base_path, model_best_path, logger)
        last_info = save_checkpoint(
            {
                'epoch': epoch,
                'args': deepcopy(args),
                'last_checkpoint': save_path,
            }, logger.path('info'), logger)

        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    logger.log('')
    logger.log('-' * 100)
    last_config_path = logger.path('log') / 'seed-{:}-last.config'.format(
        args.rand_seed)
    configure2str(arch_genotypes['last'], str(last_config_path))
    logger.log('save the last config int {:} :\n{:}'.format(
        last_config_path, arch_genotypes['last']))

    best_arch, valid_acc = arch_genotypes['best'], valid_accuracies['best']
    for key, config in arch_genotypes.items():
        if key == 'last': continue
        FLOP_ratio = config['estimated_FLOP'] / MAX_FLOP
        if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant:
            if valid_acc <= valid_accuracies[key]:
                best_arch, valid_acc = config, valid_accuracies[key]
    print('Best-Arch : {:}\nRatio={:}, Valid-ACC={:}'.format(
        best_arch, best_arch['estimated_FLOP'] / MAX_FLOP, valid_acc))
    best_config_path = logger.path('log') / 'seed-{:}-best.config'.format(
        args.rand_seed)
    configure2str(best_arch, str(best_config_path))
    logger.log('save the last config int {:} :\n{:}'.format(
        best_config_path, best_arch))
    logger.log('\n' + '-' * 200)
    logger.log(
        'Finish training/validation in {:} with Max-GPU-Memory of {:.2f} GB, and save final checkpoint into {:}'
        .format(convert_secs2time(epoch_time.sum, True),
                max(v for k, v in max_bytes.items()) / 1e9,
                logger.path('info')))
    logger.close()
コード例 #8
0
def main(xargs, nas_bench):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
    train_data, valid_data, xshape, class_num = get_datasets(
        xargs.dataset, xargs.data_path, -1)
    split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
    cifar_split = load_config(split_Fpath, None, None)
    train_split, valid_split = cifar_split.train, cifar_split.valid
    logger.log('Load split file from {:}'.format(split_Fpath))
    config_path = 'configs/nas-benchmark/algos/R-EA.config'
    config = load_config(config_path, {
        'class_num': class_num,
        'xshape': xshape
    }, logger)
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data = train_data_v2
    search_data = SearchDataset(xargs.dataset, train_data, train_split,
                                valid_split)
    # data loader
    train_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=config.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
        num_workers=xargs.workers,
        pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(
        valid_data,
        batch_size=config.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
        num_workers=xargs.workers,
        pin_memory=True)
    logger.log(
        '||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'
        .format(xargs.dataset, len(train_loader), len(valid_loader),
                config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(
        xargs.dataset, config))
    extra_info = {
        'config': config,
        'train_loader': train_loader,
        'valid_loader': valid_loader
    }

    # nas dataset load
    assert xargs.arch_nas_dataset is not None and os.path.isfile(
        xargs.arch_nas_dataset)
    search_space = get_search_spaces('cell', xargs.search_space_name)
    cs = get_configuration_space(xargs.max_nodes, search_space)

    config2structure = config2structure_func(xargs.max_nodes)
    hb_run_id = '0'

    NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
    ns_host, ns_port = NS.start()
    num_workers = 1

    #nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
    #logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
    workers = []
    for i in range(num_workers):
        w = MyWorker(nameserver=ns_host,
                     nameserver_port=ns_port,
                     convert_func=config2structure,
                     nas_bench=nas_bench,
                     run_id=hb_run_id,
                     id=i)
        w.run(background=True)
        workers.append(w)

    bohb = BOHB(configspace=cs,
                run_id=hb_run_id,
                eta=3,
                min_budget=3,
                max_budget=108,
                nameserver=ns_host,
                nameserver_port=ns_port,
                num_samples=xargs.num_samples,
                random_fraction=xargs.random_fraction,
                bandwidth_factor=xargs.bandwidth_factor,
                ping_interval=10,
                min_bandwidth=xargs.min_bandwidth)
    #          optimization_strategy=xargs.strategy, num_samples=xargs.num_samples,

    results = bohb.run(xargs.n_iters, min_n_workers=num_workers)

    bohb.shutdown(shutdown_workers=True)
    NS.shutdown()

    id2config = results.get_id2config_mapping()
    incumbent = results.get_incumbent_id()

    logger.log('Best found configuration: {:}'.format(
        id2config[incumbent]['config']))
    best_arch = config2structure(id2config[incumbent]['config'])

    info = nas_bench.query_by_arch(best_arch)
    if info is None:
        logger.log('Did not find this architecture : {:}.'.format(best_arch))
    else:
        logger.log('{:}'.format(info))
    logger.log('-' * 100)

    logger.log('workers : {:}'.format(workers[0].test_time))
    logger.close()
    return logger.log_dir, nas_bench.query_index_by_arch(best_arch)
コード例 #9
0
def main(xargs):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    train_data, valid_data, xshape, class_num = get_datasets(
        xargs.dataset, xargs.data_path, -1)
    if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
        split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
        cifar_split = load_config(split_Fpath, None, None)
        train_split, valid_split = cifar_split.train, cifar_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    elif xargs.dataset.startswith('ImageNet16'):
        split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(
            xargs.dataset)
        imagenet16_split = load_config(split_Fpath, None, None)
        train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    else:
        raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
    config_path = 'configs/nas-benchmark/algos/DARTS.config'
    config = load_config(config_path, {
        'class_num': class_num,
        'xshape': xshape
    }, logger)
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data = train_data_v2
    search_data = SearchDataset(xargs.dataset, train_data, train_split,
                                valid_split)
    # data loader
    search_loader = torch.utils.data.DataLoader(search_data,
                                                batch_size=config.batch_size,
                                                shuffle=True,
                                                num_workers=xargs.workers,
                                                pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(
        valid_data,
        batch_size=config.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
        num_workers=xargs.workers,
        pin_memory=True)
    logger.log(
        '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'
        .format(xargs.dataset, len(search_loader), len(valid_loader),
                config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(
        xargs.dataset, config))

    search_space = get_search_spaces('cell', xargs.search_space_name)
    model_config = dict2config(
        {
            'name': 'DARTS-V2',
            'C': xargs.channel,
            'N': xargs.num_cells,
            'max_nodes': xargs.max_nodes,
            'num_classes': class_num,
            'space': search_space
        }, None)
    search_model = get_cell_based_tiny_net(model_config)
    logger.log('search-model :\n{:}'.format(search_model))

    w_optimizer, w_scheduler, criterion = get_optim_scheduler(
        search_model.get_weights(), config)
    a_optimizer = torch.optim.Adam(search_model.get_alphas(),
                                   lr=xargs.arch_learning_rate,
                                   betas=(0.5, 0.999),
                                   weight_decay=xargs.arch_weight_decay)
    logger.log('w-optimizer : {:}'.format(w_optimizer))
    logger.log('a-optimizer : {:}'.format(a_optimizer))
    logger.log('w-scheduler : {:}'.format(w_scheduler))
    logger.log('criterion   : {:}'.format(criterion))
    flop, param = get_model_infos(search_model, xshape)
    #logger.log('{:}'.format(search_model))
    logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
    if xargs.arch_nas_dataset is None:
        api = None
    else:
        api = API(xargs.arch_nas_dataset)
    logger.log('{:} create API = {:} done'.format(time_string(), api))

    last_info, model_base_path, model_best_path = logger.path(
        'info'), logger.path('model'), logger.path('best')
    network, criterion = torch.nn.DataParallel(
        search_model).cuda(), criterion.cuda()

    logger.close()
コード例 #10
0
def main(xargs):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    train_data, valid_data, xshape, class_num = get_datasets(
        xargs.dataset, xargs.data_path, -1)
    assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
    if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
        split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
        cifar_split = load_config(split_Fpath, None, None)
        train_split, valid_split = cifar_split.train, cifar_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    elif xargs.dataset.startswith('ImageNet16'):
        split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(
            xargs.dataset)
        imagenet16_split = load_config(split_Fpath, None, None)
        train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    else:
        raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
    #config_path = 'configs/nas-benchmark/algos/SETN.config'
    config = load_config(xargs.config_path, {
        'class_num': class_num,
        'xshape': xshape
    }, logger)
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data = train_data_v2
    search_data = SearchDataset(xargs.dataset, train_data, train_split,
                                valid_split)
    # data loader
    search_loader = torch.utils.data.DataLoader(search_data,
                                                batch_size=config.batch_size,
                                                shuffle=True,
                                                num_workers=xargs.workers,
                                                pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(
        valid_data,
        batch_size=config.test_batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
        num_workers=xargs.workers,
        pin_memory=True)
    logger.log(
        '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'
        .format(xargs.dataset, len(search_loader), len(valid_loader),
                config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(
        xargs.dataset, config))

    search_space = get_search_spaces('cell', xargs.search_space_name)
    model_config = dict2config(
        {
            'name': 'SETN',
            'C': xargs.channel,
            'N': xargs.num_cells,
            'max_nodes': xargs.max_nodes,
            'num_classes': class_num,
            'space': search_space,
            'affine': False,
            'track_running_stats': bool(xargs.track_running_stats)
        }, None)
    logger.log('search space : {:}'.format(search_space))
    search_model = get_cell_based_tiny_net(model_config)

    w_optimizer, w_scheduler, criterion = get_optim_scheduler(
        search_model.get_weights(), config)
    a_optimizer = torch.optim.Adam(search_model.get_alphas(),
                                   lr=xargs.arch_learning_rate,
                                   betas=(0.5, 0.999),
                                   weight_decay=xargs.arch_weight_decay)
    logger.log('w-optimizer : {:}'.format(w_optimizer))
    logger.log('a-optimizer : {:}'.format(a_optimizer))
    logger.log('w-scheduler : {:}'.format(w_scheduler))
    logger.log('criterion   : {:}'.format(criterion))
    flop, param = get_model_infos(search_model, xshape)
    #logger.log('{:}'.format(search_model))
    logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
    logger.log('search-space : {:}'.format(search_space))
    if xargs.arch_nas_dataset is None:
        api = None
    else:
        api = API(xargs.arch_nas_dataset)
    logger.log('{:} create API = {:} done'.format(time_string(), api))

    last_info, model_base_path, model_best_path = logger.path(
        'info'), logger.path('model'), logger.path('best')
    network, criterion = torch.nn.DataParallel(
        search_model).cuda(), criterion.cuda()

    if last_info.exists():  # automatically resume from previous checkpoint
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            last_info))
        last_info = torch.load(last_info)
        start_epoch = last_info['epoch']
        checkpoint = torch.load(last_info['last_checkpoint'])
        genotypes = checkpoint['genotypes']
        valid_accuracies = checkpoint['valid_accuracies']
        search_model.load_state_dict(checkpoint['search_model'])
        w_scheduler.load_state_dict(checkpoint['w_scheduler'])
        w_optimizer.load_state_dict(checkpoint['w_optimizer'])
        a_optimizer.load_state_dict(checkpoint['a_optimizer'])
        logger.log(
            "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch."
            .format(last_info, start_epoch))
    else:
        logger.log("=> do not find the last-info file : {:}".format(last_info))
        start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}

    # start training
    start_time, search_time, epoch_time, total_epoch = time.time(
    ), AverageMeter(), AverageMeter(), config.epochs + config.warmup
    for epoch in range(start_epoch, total_epoch):
        w_scheduler.update(epoch, 0.0)
        need_time = 'Time Left: {:}'.format(
            convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
        epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
        logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(
            epoch_str, need_time, min(w_scheduler.get_lr())))

        search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
                    = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
        search_time.update(time.time() - start_time)
        logger.log(
            '[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'
            .format(epoch_str, search_w_loss, search_w_top1, search_w_top5,
                    search_time.sum))
        logger.log(
            '[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'
            .format(epoch_str, search_a_loss, search_a_top1, search_a_top5))

        genotype, temp_accuracy = get_best_arch(valid_loader, network,
                                                xargs.select_num)
        network.module.set_cal_mode('dynamic', genotype)
        valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
            valid_loader, network, criterion)
        logger.log(
            '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}'
            .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5,
                    genotype))
        #search_model.set_cal_mode('urs')
        #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion)
        #logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
        #search_model.set_cal_mode('joint')
        #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion)
        #logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
        #search_model.set_cal_mode('select')
        #valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion)
        #logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
        # check the best accuracy
        valid_accuracies[epoch] = valid_a_top1

        genotypes[epoch] = genotype
        logger.log('<<<--->>> The {:}-th epoch : {:}'.format(
            epoch_str, genotypes[epoch]))
        # save checkpoint
        save_path = save_checkpoint(
            {
                'epoch': epoch + 1,
                'args': deepcopy(xargs),
                'search_model': search_model.state_dict(),
                'w_optimizer': w_optimizer.state_dict(),
                'a_optimizer': a_optimizer.state_dict(),
                'w_scheduler': w_scheduler.state_dict(),
                'genotypes': genotypes,
                'valid_accuracies': valid_accuracies
            }, model_base_path, logger)
        last_info = save_checkpoint(
            {
                'epoch': epoch + 1,
                'args': deepcopy(args),
                'last_checkpoint': save_path,
            }, logger.path('info'), logger)
        with torch.no_grad():
            logger.log('arch-parameters :\n{:}'.format(
                nn.functional.softmax(search_model.arch_parameters,
                                      dim=-1).cpu()))
        if api is not None:
            logger.log('{:}'.format(api.query_by_arch(genotypes[epoch])))
        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    # the final post procedure : count the time
    start_time = time.time()
    genotype, temp_accuracy = get_best_arch(valid_loader, network,
                                            xargs.select_num)
    search_time.update(time.time() - start_time)
    network.module.set_cal_mode('dynamic', genotype)
    valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
        valid_loader, network, criterion)
    logger.log(
        'Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.'
        .format(genotype, valid_a_top1))

    logger.log('\n' + '-' * 100)
    # check the performance from the architecture dataset
    logger.log(
        'SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(
            total_epoch, search_time.sum, genotype))
    if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype)))
    logger.close()
コード例 #11
0
ファイル: val_nas.py プロジェクト: city292/NAS-Projects
    root='/home/city/Projects/build_assessment/data/train',
    transform=train_transform)
valid_data = datasets.ImageFolder(
    root='/home/city/Projects/build_assessment/data/val',
    transform=val_transform)
print(len(train_data))

train_split = []
valid_split = []

for i in range(len(train_data)):
    if i % 2 == 0:
        train_split.append(i)
    else:
        valid_split.append(i)
search_data = SearchDataset('builds', train_data, train_split, valid_split)

search_loader = torch.utils.data.DataLoader(search_data,
                                            batch_size=32,
                                            shuffle=True,
                                            num_workers=4,
                                            pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data,
                                           batch_size=32,
                                           shuffle=True,
                                           num_workers=2,
                                           pin_memory=True)

# w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
optim = torch.optim.Adadelta(search_model.get_weights())
criterion = torch.nn.CrossEntropyLoss()
コード例 #12
0
ファイル: RANDOM-NAS.py プロジェクト: xuyuewei/NAS-Projects
def main(xargs):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    train_data, valid_data, xshape, class_num = get_datasets(
        xargs.dataset, xargs.data_path, -1)
    if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
        split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
        cifar_split = load_config(split_Fpath, None, None)
        train_split, valid_split = cifar_split.train, cifar_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    #elif xargs.dataset.startswith('ImageNet16'):
    #  # all_indexes = list(range(len(train_data))) ; random.seed(111) ; random.shuffle(all_indexes)
    #  # train_split, valid_split = sorted(all_indexes[: len(train_data)//2]), sorted(all_indexes[len(train_data)//2 :])
    #  # imagenet16_split = dict2config({'train': train_split, 'valid': valid_split}, None)
    #  # _ = configure2str(imagenet16_split, 'temp.txt')
    #  split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
    #  imagenet16_split = load_config(split_Fpath, None, None)
    #  train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
    #  logger.log('Load split file from {:}'.format(split_Fpath))
    else:
        raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
    config = load_config(xargs.config_path, {
        'class_num': class_num,
        'xshape': xshape
    }, logger)
    logger.log('config : {:}'.format(config))
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data = train_data_v2
    search_data = SearchDataset(xargs.dataset, train_data, train_split,
                                valid_split)
    # data loader
    search_loader = torch.utils.data.DataLoader(search_data,
                                                batch_size=config.batch_size,
                                                shuffle=True,
                                                num_workers=xargs.workers,
                                                pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(
        valid_data,
        batch_size=config.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
        num_workers=xargs.workers,
        pin_memory=True)
    logger.log(
        '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'
        .format(xargs.dataset, len(search_loader), len(valid_loader),
                config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(
        xargs.dataset, config))

    search_space = get_search_spaces('cell', xargs.search_space_name)
    model_config = dict2config(
        {
            'name': 'RANDOM',
            'C': xargs.channel,
            'N': xargs.num_cells,
            'max_nodes': xargs.max_nodes,
            'num_classes': class_num,
            'space': search_space
        }, None)
    search_model = get_cell_based_tiny_net(model_config)

    w_optimizer, w_scheduler, criterion = get_optim_scheduler(
        search_model.parameters(), config)
    logger.log('w-optimizer : {:}'.format(w_optimizer))
    logger.log('w-scheduler : {:}'.format(w_scheduler))
    logger.log('criterion   : {:}'.format(criterion))

    last_info, model_base_path, model_best_path = logger.path(
        'info'), logger.path('model'), logger.path('best')
    network, criterion = torch.nn.DataParallel(
        search_model).cuda(), criterion.cuda()

    if last_info.exists():  # automatically resume from previous checkpoint
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            last_info))
        last_info = torch.load(last_info)
        start_epoch = last_info['epoch']
        checkpoint = torch.load(last_info['last_checkpoint'])
        valid_accuracies = checkpoint['valid_accuracies']
        search_model.load_state_dict(checkpoint['search_model'])
        w_scheduler.load_state_dict(checkpoint['w_scheduler'])
        w_optimizer.load_state_dict(checkpoint['w_optimizer'])
        logger.log(
            "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch."
            .format(last_info, start_epoch))
    else:
        logger.log("=> do not find the last-info file : {:}".format(last_info))
        start_epoch, valid_accuracies = 0, {'best': -1}

    # start training
    start_time, epoch_time, total_epoch = time.time(), AverageMeter(
    ), config.epochs + config.warmup
    for epoch in range(start_epoch, total_epoch):
        w_scheduler.update(epoch, 0.0)
        need_time = 'Time Left: {:}'.format(
            convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
        epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
        logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(
            epoch_str, need_time, min(w_scheduler.get_lr())))

        search_w_loss, search_w_top1, search_w_top5 = search_func(
            search_loader, network, criterion, w_scheduler, w_optimizer,
            epoch_str, xargs.print_freq, logger)
        logger.log(
            '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'
            .format(epoch_str, search_w_loss, search_w_top1, search_w_top5))
        valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
            valid_loader, network, criterion)
        logger.log(
            '[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'
            .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
        # check the best accuracy
        valid_accuracies[epoch] = valid_a_top1
        if valid_a_top1 > valid_accuracies['best']:
            valid_accuracies['best'] = valid_a_top1
            find_best = True
        else:
            find_best = False

        # save checkpoint
        save_path = save_checkpoint(
            {
                'epoch': epoch + 1,
                'args': deepcopy(xargs),
                'search_model': search_model.state_dict(),
                'w_optimizer': w_optimizer.state_dict(),
                'w_scheduler': w_scheduler.state_dict(),
                'valid_accuracies': valid_accuracies
            }, model_base_path, logger)
        last_info = save_checkpoint(
            {
                'epoch': epoch + 1,
                'args': deepcopy(args),
                'last_checkpoint': save_path,
            }, logger.path('info'), logger)
        if find_best:
            logger.log(
                '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'
                .format(epoch_str, valid_a_top1))
            copy_checkpoint(model_base_path, model_best_path, logger)
        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    logger.log('\n' + '-' * 200)

    best_arch, best_acc = None, -1
    for iarch in range(xargs.select_num):
        arch = search_model.random_genotype(True)
        valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
            valid_loader, network, criterion)
        logger.log(
            'final evaluation [{:02d}/{:02d}] : {:} : accuracy={:.2f}%, loss={:.3f}'
            .format(iarch, xargs.select_num, arch, valid_a_top1, valid_a_loss))
        if best_arch is None or best_acc < valid_a_top1:
            best_arch, best_acc = arch, valid_a_top1

    logger.log('Find the best one : {:} with accuracy={:.2f}%'.format(
        best_arch, best_acc))

    logger.log('\n' + '-' * 100)
    """
コード例 #13
0
ファイル: RANDOM.py プロジェクト: yrchen92/AutoDL-Projects
def main(xargs, nas_bench):
    assert torch.cuda.is_available(), "CUDA is not available."
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    if xargs.dataset == "cifar10":
        dataname = "cifar10-valid"
    else:
        dataname = xargs.dataset
    if xargs.data_path is not None:
        train_data, valid_data, xshape, class_num = get_datasets(
            xargs.dataset, xargs.data_path, -1
        )
        split_Fpath = "configs/nas-benchmark/cifar-split.txt"
        cifar_split = load_config(split_Fpath, None, None)
        train_split, valid_split = cifar_split.train, cifar_split.valid
        logger.log("Load split file from {:}".format(split_Fpath))
        config_path = "configs/nas-benchmark/algos/R-EA.config"
        config = load_config(
            config_path, {"class_num": class_num, "xshape": xshape}, logger
        )
        # To split data
        train_data_v2 = deepcopy(train_data)
        train_data_v2.transform = valid_data.transform
        valid_data = train_data_v2
        search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
        # data loader
        train_loader = torch.utils.data.DataLoader(
            train_data,
            batch_size=config.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
            num_workers=xargs.workers,
            pin_memory=True,
        )
        valid_loader = torch.utils.data.DataLoader(
            valid_data,
            batch_size=config.batch_size,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
            num_workers=xargs.workers,
            pin_memory=True,
        )
        logger.log(
            "||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
                xargs.dataset, len(train_loader), len(valid_loader), config.batch_size
            )
        )
        logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
        extra_info = {
            "config": config,
            "train_loader": train_loader,
            "valid_loader": valid_loader,
        }
    else:
        config_path = "configs/nas-benchmark/algos/R-EA.config"
        config = load_config(config_path, None, logger)
        logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
        extra_info = {"config": config, "train_loader": None, "valid_loader": None}
    search_space = get_search_spaces("cell", xargs.search_space_name)
    random_arch = random_architecture_func(xargs.max_nodes, search_space)
    # x =random_arch() ; y = mutate_arch(x)
    x_start_time = time.time()
    logger.log("{:} use nas_bench : {:}".format(time_string(), nas_bench))
    best_arch, best_acc, total_time_cost, history = None, -1, 0, []
    # for idx in range(xargs.random_num):
    while total_time_cost < xargs.time_budget:
        arch = random_arch()
        accuracy, cost_time = train_and_eval(arch, nas_bench, extra_info, dataname)
        if total_time_cost + cost_time > xargs.time_budget:
            break
        else:
            total_time_cost += cost_time
        history.append(arch)
        if best_arch is None or best_acc < accuracy:
            best_acc, best_arch = accuracy, arch
        logger.log(
            "[{:03d}] : {:} : accuracy = {:.2f}%".format(len(history), arch, accuracy)
        )
    logger.log(
        "{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s (real-cost = {:.3f} s).".format(
            time_string(),
            best_arch,
            best_acc,
            len(history),
            total_time_cost,
            time.time() - x_start_time,
        )
    )

    info = nas_bench.query_by_arch(best_arch, "200")
    if info is None:
        logger.log("Did not find this architecture : {:}.".format(best_arch))
    else:
        logger.log("{:}".format(info))
    logger.log("-" * 100)
    logger.close()
    return logger.log_dir, nas_bench.query_index_by_arch(best_arch)
コード例 #14
0
def main(xargs, nas_bench):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads(xargs.workers)
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
    train_data, valid_data, xshape, class_num = get_datasets(
        xargs.dataset, xargs.data_path, -1)
    split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
    cifar_split = load_config(split_Fpath, None, None)
    train_split, valid_split = cifar_split.train, cifar_split.valid
    logger.log('Load split file from {:}'.format(split_Fpath))
    config_path = 'configs/nas-benchmark/algos/R-EA.config'
    config = load_config(config_path, {
        'class_num': class_num,
        'xshape': xshape
    }, logger)
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data = train_data_v2
    search_data = SearchDataset(xargs.dataset, train_data, train_split,
                                valid_split)
    # data loader
    train_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=config.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
        num_workers=xargs.workers,
        pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(
        valid_data,
        batch_size=config.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
        num_workers=xargs.workers,
        pin_memory=True)
    logger.log(
        '||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'
        .format(xargs.dataset, len(train_loader), len(valid_loader),
                config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(
        xargs.dataset, config))
    extra_info = {
        'config': config,
        'train_loader': train_loader,
        'valid_loader': valid_loader
    }

    search_space = get_search_spaces('cell', xargs.search_space_name)
    policy = Policy(xargs.max_nodes, search_space)
    optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate)
    eps = np.finfo(np.float32).eps.item()
    baseline = ExponentialMovingAverage(xargs.EMA_momentum)
    logger.log('policy    : {:}'.format(policy))
    logger.log('optimizer : {:}'.format(optimizer))
    logger.log('eps       : {:}'.format(eps))

    # nas dataset load
    logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))

    # REINFORCE
    # attempts = 0
    for istep in range(xargs.RL_steps):
        log_prob, action = select_action(policy)
        arch = policy.generate_arch(action)
        reward = train_and_eval(arch, nas_bench, extra_info)

        baseline.update(reward)
        # calculate loss
        policy_loss = (-log_prob * (reward - baseline.value())).sum()
        optimizer.zero_grad()
        policy_loss.backward()
        optimizer.step()

        logger.log(
            'step [{:3d}/{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'
            .format(istep, xargs.RL_steps, baseline.value(),
                    policy_loss.item(), policy.genotype()))
        #logger.log('----> {:}'.format(policy.arch_parameters))
        logger.log('')

    best_arch = policy.genotype()

    info = nas_bench.query_by_arch(best_arch)
    if info is None:
        logger.log('Did not find this architecture : {:}.'.format(best_arch))
    else:
        logger.log('{:}'.format(info))
    logger.log('-' * 100)
    logger.close()
    return logger.log_dir, nas_bench.query_index_by_arch(best_arch)
コード例 #15
0
def main(xargs):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled   = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.set_num_threads( xargs.workers )
    prepare_seed(xargs.rand_seed)
    logger = prepare_logger(args)

    train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
    # class_num = 4
    # xshape = (1,3,88,88)
    # print(xshape)
    if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
        split_Fpath = '/home/city/Projects/NAS-Projects/configs/nas-benchmark/cifar-split.txt'
        cifar_split = load_config(split_Fpath, None, None)
        train_split, valid_split = cifar_split.train, cifar_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    elif xargs.dataset.startswith('ImageNet16'):
        split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
        imagenet16_split = load_config(split_Fpath, None, None)
        train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
        logger.log('Load split file from {:}'.format(split_Fpath))
    else:
        raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
    config_path = '/home/city/Projects/NAS-Projects/configs/nas-benchmark/algos/DARTS.config'
    config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
    print('config')
    print(config)
    # To split data
    train_data_v2 = deepcopy(train_data)
    train_data_v2.transform = valid_data.transform
    valid_data    = train_data_v2
    search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
    # data loader
    search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True , num_workers=xargs.workers, pin_memory=True)
    valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
    logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
    logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))

    # train_transform = transforms.Compose([
    #     transforms.RandomHorizontalFlip(),
    #     transforms.ToTensor()
    #     # transforms.Normalize(mean=[128, 128, 128], std=[50, 50, 50])
    # ])
    # val_transform = transforms.Compose([
    #     # transforms.RandomHorizontalFlip(),
    #     transforms.ToTensor()
    #     # transforms.Normalize(mean=[128, 128, 128], std=[50, 50, 50])
    # ])
    #
    # train_data = datasets.ImageFolder(root='/home/city/Projects/build_assessment/data/train',
    #                                   transform=train_transform)
    # valid_data = datasets.ImageFolder(root='/home/city/Projects/build_assessment/data/val',
    #                                   transform=val_transform)
    # print(len(train_data))
    # print('2333333333333333333333333333333')
    # train_split = []
    # valid_split = []
    #
    # for i in range(len(train_data)):
    #     if i%2==0:
    #         train_split.append(i)
    #     else:
    #         valid_split.append(i)
    # search_data = SearchDataset('builds', train_data, train_split, valid_split)
    #
    # search_loader = torch.utils.data.DataLoader(search_data,
    #                                              batch_size=32, shuffle=True,
    #                                              num_workers=4, pin_memory=True
    #                                              )
    # valid_loader = torch.utils.data.DataLoader(valid_data,
    #                                              batch_size=32, shuffle=True,
    #                                              num_workers=2, pin_memory=True
    #                                              )



    search_space = get_search_spaces('cell', xargs.search_space_name)
    model_config = dict2config({'name': 'DARTS-V2', 'C': xargs.channel, 'N': xargs.num_cells,
                                'max_nodes': xargs.max_nodes, 'num_classes': class_num,
                                'space'    : search_space}, None)
    search_model = get_cell_based_tiny_net(model_config)
    logger.log('search-model :\n{:}'.format(search_model))

    w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
    a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
    logger.log('w-optimizer : {:}'.format(w_optimizer))
    logger.log('a-optimizer : {:}'.format(a_optimizer))
    logger.log('w-scheduler : {:}'.format(w_scheduler))
    logger.log('criterion   : {:}'.format(criterion))
    flop, param  = get_model_infos(search_model, xshape)
    #logger.log('{:}'.format(search_model))
    logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
    if xargs.arch_nas_dataset is None:
        api = None
    else:
        api = API(xargs.arch_nas_dataset)
    logger.log('{:} create API = {:} done'.format(time_string(), api))

    last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
    network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()

    if last_info.exists(): # automatically resume from previous checkpoint
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
        last_info   = torch.load(last_info)
        start_epoch = last_info['epoch']
        checkpoint  = torch.load(last_info['last_checkpoint'])
        genotypes   = checkpoint['genotypes']
        valid_accuracies = checkpoint['valid_accuracies']
        search_model.load_state_dict( checkpoint['search_model'] )
        w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
        w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
        a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
        logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
    else:
        logger.log("=> do not find the last-info file : {:}".format(last_info))
        start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}

    # start training
    start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
    for epoch in range(start_epoch, total_epoch):
        w_scheduler.update(epoch, 0.0)
        need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
        epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
        min_LR    = min(w_scheduler.get_lr())
        logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min_LR))

        search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
        search_time.update(time.time() - start_time)
        logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
        valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion)
        logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
        # check the best accuracy
        valid_accuracies[epoch] = valid_a_top1
        if valid_a_top1 > valid_accuracies['best']:
            valid_accuracies['best'] = valid_a_top1
            genotypes['best']        = search_model.genotype()
            op_list, _ = genotypes['best'].tolist(remove_str=None)
            find_best = True
            best_arch_nums = op_list2str(op_list)
            torch.save(search_model,'/home/city/disk/log/builds-darts/darts2_%04d_%s_%s_%.2f.pth' %(epoch,time_string_short(),best_arch_nums, valid_a_top1))
            print('/home/city/disk/log/builds-darts/darts2_%04d_%s_%s_%.2f.pth' %(epoch,time_string_short(),best_arch_nums, valid_a_top1))
        else: find_best = False

        genotypes[epoch] = search_model.genotype()
        logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
        # save checkpoint
        save_path = save_checkpoint({'epoch' : epoch + 1,
                                     'args'  : deepcopy(xargs),
                                     'search_model': search_model.state_dict(),
                                     'w_optimizer' : w_optimizer.state_dict(),
                                     'a_optimizer' : a_optimizer.state_dict(),
                                     'w_scheduler' : w_scheduler.state_dict(),
                                     'genotypes'   : genotypes,
                                     'valid_accuracies' : valid_accuracies},
                                    model_base_path, logger)
        last_info = save_checkpoint({
            'epoch': epoch + 1,
            'args' : deepcopy(args),
            'last_checkpoint': save_path,
        }, logger.path('info'), logger)
        if find_best:
            logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1))
            copy_checkpoint(model_base_path, model_best_path, logger)
        with torch.no_grad():
            logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() ))
            logger.log('arch :\n{:}'.format(nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu().argmax(dim=-1)))
        if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] )))
        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    logger.log('\n' + '-'*100)
    # check the performance from the architecture dataset
    logger.log('DARTS-V2 : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, genotypes[total_epoch-1]))
    if api is not None: logger.log('{:}'.format( api.query_by_arch(genotypes[total_epoch-1]) ))
    logger.close()