コード例 #1
0
            # Declare some parameters
            batch_size = 32

            # Define some model-specific parameters
            elg_first_layer_stride = 1
            elg_num_modules = 3
            elg_num_feature_maps = 32

            # Define training data source
            from datasources import UnityEyes
            unityeyes = UnityEyes(
                session,
                batch_size=batch_size,
                data_format='NCHW',
                unityeyes_path='/home/xiehuan/datasets/UnityEyes_Windows/imgs',
                min_after_dequeue=1000,
                generate_heatmaps=True,
                shuffle=True,
                staging=True,
                eye_image_shape=(36, 60),
                heatmaps_scale=1.0 / elg_first_layer_stride,
            )
            unityeyes.set_augmentation_range('translation', 2.0, 10.0)
            unityeyes.set_augmentation_range('rotation', 1.0, 10.0)
            unityeyes.set_augmentation_range('intensity', 0.5, 20.0)
            unityeyes.set_augmentation_range('blur', 0.1, 1.0)
            unityeyes.set_augmentation_range('scale', 0.01, 0.1)
            unityeyes.set_augmentation_range('rescale', 1.0, 0.5)
            unityeyes.set_augmentation_range('num_line', 0.0, 2.0)
            unityeyes.set_augmentation_range('heatmap_sigma', 7.5, 2.5)

            from datasources import HDF5Source
コード例 #2
0
            test_losses_or_metrics=['gaze_mse', 'gaze_angular'],

            # Data sources for training and testing.
            train_data={
                'real':
                HDF5Source(
                    session,
                    batch_size,
                    hdf_path='../datasets/MPIIGaze_kaggle_students.h5',
                    keys_to_use=['train'],
                    min_after_dequeue=100,
                ),
                'unity':
                UnityEyes(
                    session,
                    batch_size,
                    unityeyes_path='../datasets/UnityEyes/',
                )
            },
            test_data={
                'real':
                HDF5Source(
                    session,
                    batch_size,
                    hdf_path='../datasets/MPIIGaze_kaggle_students.h5',
                    keys_to_use=['validation'],
                    testing=True,
                ),
            },
            beta1=BETA1,
            beta2=BETA2)