from torch.autograd import Variable from davis import DAVIS from model import generate_model import time import subprocess as sp import pickle class Object(): pass opt = Object() opt.crop_size = 512 opt.double_size = True if opt.crop_size == 512 else False ########## DAVIS DAVIS_ROOT = './rgb_new'#'./image_2' 480p/inpaint.txt DTset = DAVIS(DAVIS_ROOT, imset='480p/inpaint.txt', size=(opt.crop_size, opt.crop_size)) DTloader = data.DataLoader(DTset, batch_size=1, shuffle=False, num_workers=1) opt.search_range = 4 # fixed as 4: search range for flow subnetworks opt.pretrain_path = 'results/vinet_agg_rec/save_agg_rec_512.pth' opt.result_path = 'results/vinet_agg_rec' opt.model = 'vinet_final' opt.batch_norm = False opt.no_cuda = False # use GPU opt.no_train = True opt.test = True opt.t_stride = 3 opt.loss_on_raw = False opt.prev_warp = True opt.save_image = True
import subprocess as sp import pickle import pdb class Object(): pass opt = Object() opt.crop_size = 512 opt.double_size = True if opt.crop_size == 512 else False ########## DAVIS DAVIS_ROOT = './DAVIS_demo' DTset = DAVIS(DAVIS_ROOT, imset='2016/demo_davis.txt', size=(opt.crop_size, opt.crop_size)) DTloader = data.DataLoader(DTset, batch_size=1, shuffle=False, num_workers=1) opt.search_range = 4 # fixed as 4: search range for flow subnetworks opt.pretrain_path = 'results/vinet_agg_rec/save_agg_rec_512.pth' opt.result_path = 'results/vinet_agg_rec' opt.model = 'vinet_final' opt.batch_norm = False opt.no_cuda = False # use GPU opt.no_train = True opt.test = True opt.t_stride = 3 opt.loss_on_raw = False opt.prev_warp = True
args = get_arguments() class Object: pass opt = Object() opt.crop_size = 512 opt.double_size = True if opt.crop_size == 512 else False ########## DAVIS DAVIS_ROOT = args.input_root_path mask = args.input_mask_path DTset = DAVIS(DAVIS_ROOT, mask, imset='example.txt', size=(opt.crop_size, opt.crop_size)) DTloader = data.DataLoader(DTset, batch_size=1, shuffle=False, num_workers=1) opt.search_range = 4 # fixed as 4: search range for flow subnetworks opt.pretrain_path = 'results/vinet_agg_rec/save_agg_rec_512.pth' opt.result_path = 'results/vinet_agg_rec' opt.model = 'vinet_final' opt.batch_norm = False opt.no_cuda = False # use GPU opt.no_train = True opt.test = True opt.t_stride = 3 opt.loss_on_raw = False opt.prev_warp = True