コード例 #1
0
def calculate():

    C = constants.const()

    filename = 'Xcalc_log_cos.txt'
    """ Load info from collected simulation info file """

    f = h5py.File(C['combineread_output'], 'r')
    var_set = f.get('var_set')
    theta = np.sort(np.unique(var_set[:, 0]))
    msg = "theta vec: %s" % str(theta * (180 / np.pi))
    fn.WP(msg, filename)
    f.close

    f = h5py.File(C['basiscos_output'], 'a')
    """Evalute the cosine basis functions for theta"""

    for q in xrange(C['N_q']):

        vec = np.cos(q * np.pi * theta / C['L_th'])

        set_id = 'q_%s' % str(q).zfill(5)
        f.create_dataset(set_id, data=vec)
        fn.WP(set_id, filename)

    f.close()
コード例 #2
0
def calculate():

    C = constants.const()

    filename = 'Xcalc_log_cos.txt'
    """ Load info from collected simulation info file """

    f = h5py.File(C['combineread_output'], 'r')
    var_set = f.get('var_set')
    theta = np.sort(np.unique(var_set[:, 0]))
    et_norm = np.sort(np.unique(var_set[:, 4]))
    f.close

    f = h5py.File(C['basis_eval_cos'], 'a')
    """Evalute the cosine basis functions for theta"""

    for q in xrange(C['N_q']):

        vec = np.cos(q * np.pi * theta / C['L_th'])

        set_id = 'q_%s' % str(q).zfill(5)
        f.create_dataset(set_id, data=vec)
        fn.WP(set_id, filename)
    """Evalute the cosine basis functions for en"""

    for r in xrange(C['N_r']):

        vec = np.cos(r * np.pi * (et_norm - C['a']) / C['L_en'])

        set_id = 'r_%s' % str(r).zfill(5)
        f.create_dataset(set_id, data=vec)
        fn.WP(set_id, filename)

    f.close()
コード例 #3
0
def combine():

    C = constants.const()

    filename = 'log_Xcalc_combine.txt'

    f_master = h5py.File(C['combineXcalc_output'], 'w')

    """load the cosine basis evaluations"""
    f_cos = h5py.File(C['Xcalccos_output'], 'r')

    for name in f_cos.keys():
        fn.WP(name, filename)
        tmp = f_cos.get(name)[...]
        f_master.create_dataset(name, data=tmp)
        del tmp

    f_cos.close()

    """load the GSH basis evaluations"""
    for jobnum in xrange(C['XcalcGSH_njobs']):

        f_gsh = h5py.File(C['XcalcGSH_output'] % str(jobnum).zfill(5), 'r')

        for name in f_gsh.keys():
            fn.WP(name, filename)
            tmp = f_gsh.get(name)[...]
            f_master.create_dataset(name, data=tmp)
            del tmp

        f_gsh.close()

    f_master.close()
コード例 #4
0
def calculate():

    C = constants_old.const()

    filename = 'Xcalc_log_cos.txt'

    """ Load info from collected simulation info file """

    f = h5py.File(C['combineread_output'], 'r')
    var_set = f.get('var_set')

    theta = var_set[:, 0]

    f.close

    f = h5py.File(C['Xcalccos_output'], 'a')

    """Evalute the cosine basis functions for theta"""

    st = time.time()

    for q in xrange(C['N_q']):

        vec = np.cos(q*np.pi*theta/C['L_th'])

        set_id = 'q_%s' % str(q).zfill(5)
        f.create_dataset(set_id, data=vec)
        fn.WP(set_id, filename)

    msg = "Cosine basis evaluation for theta complete: %ss" \
        % np.round(time.time()-st, 3)
    fn.WP(msg, filename)

    f.close()
コード例 #5
0
def job_check(n_jobs, walltime, scriptname, logfile):

    flag_sum = 0
    st = time.time()

    while flag_sum < n_jobs:

        time.sleep(5)
        flag_sum = 0

        for ii in xrange(n_jobs):

            flag_file = "flag%s" % str(ii).zfill(5)

            if os.path.isfile(flag_file):
                flag_sum += 1
            else:
                break

        if (time.time()-st)/3600. > walltime:
            raise RuntimeError("walltime exceeded for %s" % scriptname)

    for ii in xrange(n_jobs):
        os.remove("flag%s" % str(ii).zfill(5))

    fn.WP('all jobs completed', logfile)
コード例 #6
0
def combine():

    C = constants_old.const()
    filename = 'log_combine_coef.txt'

    """ Combine the results of the coefficient determination"""
    # coeff is the combined vector of coefficients as calculated by the
    # orthogonal regression
    coef = np.zeros((C['cmax'], 10), dtype='complex128')

    c = 0
    for tnum in xrange(C['integrate_njobs']):

        fn.WP(str(tnum), filename)

        # load partially filled coefficient arrays from each file
        f = h5py.File(C['integrate_output'] % str(tnum).zfill(5), 'r')
        coef_prt = f.get('coef_prt')[...]
        f.close()

        clen = coef_prt.shape[0]

        coef[c:c+clen, :] = coef_prt
        c += clen

    # save the coefficients file
    f = h5py.File(C['combinecoef_coef'], 'w')
    f.create_dataset('coef', data=coef)
    f.close()

    rrr = np.hstack([np.arange(coef.shape[0])[:, None],
                     coef[:, 0].real[:, None]])
    print np.round(rrr, 1)
コード例 #7
0
filename = 'log_combine_coeff.txt'
""" Initialize important variables """
# pick range of indxmat to calculate
n_jobs = 5  # number of jobs submitted to PACE

N_p = 215  # number of GSH bases to evaluate
cmax = N_p  # total number of permutations of basis functions
print cmax
""" Combine the results of the parallelized integration """
# coeff is the combined vector of coefficients as calculated by the
# integration
coeff = np.zeros(cmax, dtype='complex128')

c = 0
for tnum in xrange(n_jobs):

    fn.WP(str(tnum), filename)

    # load partially filled XtX arrays from each file
    f = h5py.File('coeff_prt_%s.hdf5' % tnum, 'r')
    coeff_prt = f.get('coeff_prt')

    for ii in xrange(coeff_prt.shape[0]):

        coeff[c] = coeff_prt[ii]
        c += 1

f = h5py.File('coeff_total.hdf5', 'w')
f.create_dataset('coeff', data=coeff)
f.close()
コード例 #8
0
    all_basis_p[:, p] = np.squeeze(gsh.gsh_eval(X, [p]))

all_basis_q = np.zeros([N_pts, N_q], dtype='complex128')
for q in xrange(N_q):

    all_basis_q[:, q] = np.cos(q * np.pi * theta / L_th)

all_basis_r = np.zeros([N_pts, N_r], dtype='complex128')
for r in xrange(N_r):

    all_basis_r[:, r] = np.cos(r * np.pi * (et_norm - a) / L_en)
"""Select the desired set of coefficients"""

cmax = N_p * N_q * N_r  # total number of permutations of basis functions

fn.WP(str(cmax), filename)

cmat = np.unravel_index(np.arange(cmax), [N_p, N_q, N_r])
cmat = np.array(cmat).T

cuttoff = thr * np.abs(coeff).max()
indxvec = np.arange(cmax)[np.abs(coeff) > cuttoff]

N_coef = indxvec.size
pct_coef = 100. * N_coef / cmax
fn.WP("number of coefficients retained: %s" % N_coef, filename)
fn.WP("percentage of coefficients retained %s%%" % np.round(pct_coef, 4),
      filename)
"""Perform the prediction"""

Y_ = np.zeros(theta.size, dtype='complex128')
コード例 #9
0
def gen():

    C = constants.const()

    filename = 'log_gen_test_data.txt'

    inc2rad = C['inc'] * np.pi / 180.
    """get the test euler angle set"""

    thetavec = (np.arange(C['n_th']) + 0.5) * inc2rad
    phi1vec = (np.arange(C['n_p1']) + 0.5) * inc2rad
    phivec = (np.arange(C['n_P']) + 0.5) * inc2rad
    phi2vec = (np.arange(C['n_p2']) + 0.5) * inc2rad

    phi1, phi, phi2 = np.meshgrid(phi1vec, phivec, phi2vec)

    phi1 = phi1.reshape(phi1.size)
    phi = phi.reshape(phi.size)
    phi2 = phi2.reshape(phi2.size)

    angles = np.zeros([C['n_tot'], 4], dtype='float64')

    for ii in xrange(C['n_th']):
        ii_stt = ii * C['n_eul']
        ii_end = ii_stt + C['n_eul']
        angles[ii_stt:ii_end, 0] = thetavec[ii]
        angles[ii_stt:ii_end, 1] = phi1
        angles[ii_stt:ii_end, 2] = phi
        angles[ii_stt:ii_end, 3] = phi2
    """Generate test Y"""

    bvec = np.random.randint(low=0, high=C['cmax'], size=(5))
    bvec[0] = 0
    bvec = np.unique(bvec)

    bval = np.random.randint(low=1, high=10, size=bvec.size)

    msg = "bvec: %s" % str(bvec)
    fn.WP(msg, filename)
    msg = "bval: %s" % str(bval)
    fn.WP(msg, filename)

    cmat = np.unravel_index(np.arange(C['cmax']), C['N_tuple'])
    cmat = np.array(cmat).T

    Y = np.zeros((C['n_tot']), dtype='complex128')

    for ii in xrange(bvec.size):
        p, q = cmat[bvec[ii], :]

        tmpgsh = gsh.gsh_eval(angles[:, 1:4], [p])
        tmpcos = np.cos(q * np.pi * angles[:, 0] / C['L_th'])

        Y += bval[ii] * np.squeeze(tmpgsh) * tmpcos

    alldata = np.zeros((C['n_tot'], 14), dtype='complex128')
    alldata[:, :4] = angles
    alldata[:, 4] = Y

    f1 = h5py.File(C['combineread_output'], 'w')
    f1.create_dataset("var_set", data=alldata)
    f1.close()
コード例 #10
0
N_L = 15  # number of GSH basis functions
N_p = 8  # number of complex exponential basis functions
N_q = 8  # number of Legendre basis functions
cmax = N_L*N_p*N_q  # total number of permutations of basis functions
print cmax

# XtX is the matrix (X^T * X) in the normal equation for multiple
# linear regression
XtX = np.zeros((cmax, cmax), dtype='complex128')

# pick range of indxmat to calculate
n_jobs = 50  # number of jobs submitted to PACE

for tnum in xrange(n_jobs):

    fn.WP(str(tnum), filename)

    # load partially filled XtX arrays from each file
    f = h5py.File('XtX%s.hdf5' % tnum, 'r')
    dotvec = f.get('dotvec')

    for c in xrange(dotvec.shape[0]):
        ii, jj = np.real(dotvec[c, 0:2])

        if XtX[ii, jj] != 0 and XtX[jj, ii] != 0:
            fn.WP("overlap in parallel calculations!!!", filename)

        if ii == jj:
            XtX[ii, ii] = dotvec[c, 2]
        else:
            XtX[ii, jj] = dotvec[c, 2]
コード例 #11
0
# cid.combine()
# fn.WP('input files combined', logfile)

"""run scripts to calculate X for GSH"""

af.job_submit(njobs=C['XcalcGSH_njobs'],
              mem=C['XcalcGSH_mem'],
              walltime=C['XcalcGSH_walltime'],
              path=C['path'],
              scriptname=C['XcalcGSH_scriptname'])

"""run scripts to calculate X for the cosine bases"""

xcos.calculate()
fn.WP('X calculated for the cosine bases', logfile)

"""check to see that the jobs for XcalcGSH have completed"""

af.job_check(n_jobs=C['XcalcGSH_njobs'],
             walltime=C['XcalcGSH_walltime'],
             scriptname=C['XcalcGSH_scriptname'],
             logfile=logfile)

"""combine the X calculations"""

cxc.combine()
fn.WP('X combined for all bases', logfile)

"""run scripts to perform the integration for coefficients"""
コード例 #12
0
theta = var_set[:, 0]

X = np.zeros((N_pts, 3), dtype='float64')
X[:, 0] = var_set[:, 1]  # phi1
X[:, 1] = var_set[:, 2]  # phi
X[:, 2] = var_set[:, 3]  # phi2

et_norm = var_set[:, 4]
Y = var_set[:, 5]

f.close()
"""Select the desired set of coefficients"""

cmax = N_p * N_q * N_r  # total number of permutations of basis functions

fn.WP(str(cmax), filename)

cmat = np.unravel_index(np.arange(cmax), [N_p, N_q, N_r])
cmat = np.array(cmat).T

cuttoff = thr * np.abs(coeff).max()
indxvec = np.arange(cmax)[np.abs(coeff) > cuttoff]

N_coef = indxvec.size
pct_coef = 100. * N_coef / cmax
fn.WP("number of coefficients retained: %s" % N_coef, filename)
fn.WP("percentage of coefficients retained %s%%" % np.round(pct_coef, 4),
      filename)
"""Evaluate the parts of the basis function individually"""

st = time.time()
コード例 #13
0
ファイル: main.py プロジェクト: hrh741/MKS-Experimentation
af.job_submit(njobs=C['read_njobs'],
              mem=C['read_mem'],
              walltime=C['read_walltime'],
              path=C['path'],
              scriptname=C['read_scriptname'])
"""check that the read jobs have completed"""

af.job_check(n_jobs=C['read_njobs'],
             walltime=C['read_walltime'],
             scriptname=C['read_scriptname'],
             logfile=logfile)
"""combine the files to read"""

cid.combine()
fn.WP('input files combined', logfile)
"""run scripts to calculate X for GSH"""

af.job_submit(njobs=C['XcalcGSH_njobs'],
              mem=C['XcalcGSH_mem'],
              walltime=C['XcalcGSH_walltime'],
              path=C['path'],
              scriptname=C['XcalcGSH_scriptname'])
"""run scripts to calculate X for the cosine bases"""

xcos.calculate()
fn.WP('X calculated for the cosine bases', logfile)
"""check to see that the jobs for XcalcGSH have completed"""

af.job_check(n_jobs=C['XcalcGSH_njobs'],
             walltime=C['XcalcGSH_walltime'],
コード例 #14
0
import numpy as np
import db_functions as fn
import constants
import h5py

C = constants.const()

filename = 'log_Xcalc_combine.txt'

f_master = h5py.File("X_parts.hdf5", 'w')
"""load the cosine basis evaluations"""
f_cos = h5py.File("X_parts_cos.hdf5", 'r')

for name in f_cos.keys():
    fn.WP(name, filename)
    tmp = f_cos.get(name)[...]
    f_master.create_dataset(name, data=tmp)
    del tmp

f_cos.close()
"""load the GSH basis evaluations"""
for jobnum in xrange(C['n_jobs_Xcalc']):

    f_gsh = h5py.File("X_parts_GSH_%s.hdf5" % jobnum, 'r')

    for name in f_gsh.keys():
        fn.WP(name, filename)
        tmp = f_gsh.get(name)[...]
        f_master.create_dataset(name, data=tmp)
        del tmp
コード例 #15
0
import itertools as it
import db_functions as fn
import h5py
import time
import sys


tnum = np.int64(sys.argv[1])

filename = 'log_XtX_%s.txt' % str(tnum)

N_L = 15  # number of GSH basis functions
N_p = 8  # number of complex exponential basis functions
N_q = 8  # number of Legendre basis functions
cmax = N_L*N_p*N_q  # total number of permutations of basis functions
fn.WP(str(cmax), filename)

# iivec is vector of indices for all permutations of basis function indices
Ivec = np.arange(cmax)

# cmat is the matrix containing all permutations of basis function indices
cmat = np.unravel_index(np.arange(cmax), [N_L, N_p, N_q])
cmat = np.array(cmat).T

# indxmat is the matrix containing all unique combinations of elements of iivec
tmp = it.combinations_with_replacement(Ivec, 2)
Imat = np.array(list(tmp))
ImatL = Imat.shape[0]
fn.WP(str(ImatL), filename)

# pick range of indxmat to calculate
コード例 #16
0
ファイル: XtYcalc.py プロジェクト: hrh741/MKS-Experimentation
cmax = N_L * N_p * N_q
cvec = np.unravel_index(np.arange(cmax), [N_L, N_p, N_q])
cvec = np.array(cvec).T

st = time.time()

f = h5py.File('var_extract_total.hdf5', 'r')
var_set = f.get('var_set')
Y = var_set[:, 5]
f.close

XtY = np.zeros(cmax, dtype='complex128')

for ii in xrange(cmax):

    fn.WP(str(ii), filename)

    L, p, q = cvec[ii, :]
    set_id_ii = 'set_%s_%s_%s' % (L, p, q)
    f = h5py.File('pre_fourier_p%s_q%s.hdf5' % (p, q), 'r')
    ep_set_ii = f.get(set_id_ii)[...]
    f.close()

    XtY[ii] = np.dot(ep_set_ii.conj(), Y)

f = h5py.File('XtYtotal.hdf5', 'w')
f.create_dataset('XtY', data=XtY)
f.close()

fn.WP("XtY prepared: %ss" % (np.round(time.time() - st, 3)), filename)
コード例 #17
0
X = np.zeros((theta.size, 3), dtype='float64')
X[:, 0] = var_set[:, 1]  # phi1
X[:, 1] = var_set[:, 2]  # phi
X[:, 2] = var_set[:, 3]  # phi2

Y = var_set[:, 4]

f.close()

L_th = np.pi / 3.

N_p = 215  # number of GSH bases to evaluate
N_q = 9  # number of cosine bases to evaluate
cmax = N_p * N_q  # total number of permutations of basis functions

fn.WP(str(theta.size), filename)
fn.WP(str(cmax), filename)

cmat = np.unravel_index(np.arange(cmax), [N_p, N_q])
cmat = np.array(cmat).T

st = time.time()

f = h5py.File('X_parts.hdf5', 'r')

vec = np.zeros(theta.size, dtype='complex128')

# for ii in xrange(10):
for ii in xrange(cmax):

    if np.mod(ii, 100) == 0:
コード例 #18
0
f.close()

cmax = N_p * N_q * N_r  # total number of permutations of basis functions
print cmax
""" Combine the results of the coefficient determination and
calculate the value of the test function """
# coeff is the combined vector of coefficients as calculated by the
# orthogonal regression
coeff = np.zeros(cmax, dtype='complex128')
Y_ = np.zeros(Y.shape, dtype='complex128')

c = 0
for tnum in xrange(n_jobs):

    fn.WP(str(tnum), filename)

    # load partially filled coefficient arrays from each file
    f = h5py.File('coeff_prt_%s.hdf5' % tnum, 'r')
    coeff_prt = f.get('coeff_prt')[...]
    test_prt = f.get('test_prt')[...]
    f.close()

    Y_ += test_prt  # add pre-calculated portions to function prediction

    # insert pre-calculated coefficients to final list
    for ii in xrange(coeff_prt.shape[0]):

        coeff[c] = coeff_prt[ii]
        c += 1
コード例 #19
0
et_norm = var_set[:, 4]

f.close

f = h5py.File('X_parts.hdf5', 'a')
""" first evalute the GSH basis functions """

st = time.time()

for p in xrange(N_p):

    vec = gsh.gsh_eval(X, [p])

    set_id = 'p_%s' % p
    f.create_dataset(set_id, data=vec)
    fn.WP(set_id, filename)

msg = "GSH basis evaluation complete: %ss" % np.round(time.time() - st, 3)
fn.WP(msg, filename)
""" second evalute the cosine basis functions for theta"""

st = time.time()

for q in xrange(N_q):

    vec = np.cos(q * np.pi * theta / L_th)

    set_id = 'q_%s' % q
    f.create_dataset(set_id, data=vec)
    fn.WP(set_id, filename)
コード例 #20
0
n_th = 60/inc_th  # number of theta samples for FZ
n_p1 = 360/inc_eul  # number of phi1 samples for FZ
n_P = 90/inc_eul  # number of Phi samples for FZ
n_p2 = 60/inc_eul  # number of phi2 samples for FZ
n_en = 14  # number of et samples for FZ

L_th = np.pi/3.
L_en = b-a

n_eul = n_p1*n_P*n_p2


""" Calculate basis function indices """
cmax = N_p*N_q*N_r  # total number of permutations of basis functions
fn.WP(str(cmax), filename)

# cmat is the matrix containing all permutations of basis function indices
cmat = np.unravel_index(np.arange(cmax), [N_p, N_q, N_r])
cmat = np.array(cmat).T

""" Deal with the parallelization of this operation specifically pick range
of indxmat to calculate """
n_ii = np.int64(np.ceil(np.float(cmax)/n_jobs))  # number dot products per job
fn.WP(str(n_ii), filename)

ii_stt = tnum*n_ii  # start index
if (tnum+1)*n_ii > cmax:
    ii_end = cmax
else:
    ii_end = (tnum+1)*n_ii  # end index
コード例 #21
0
# """check to see that the jobs for XcalcGSH have completed"""

# af.job_check(n_jobs=C['basisgsh_njobs'],
#              walltime=C['basisgsh_walltime'],
#              scriptname=C['basisgsh_scriptname'],
#              logfile=logfile)

# fn.WP('gsh bases evaluated', logfile)

# """combine the basis evaluations"""

# bc.combine()
# fn.WP('all bases combined', logfile)
"""run scripts to perform the integration for coefficients"""

af.job_submit(njobs=C['integrate_njobs'],
              mem=C['integrate_mem'],
              walltime=C['integrate_walltime'],
              path=C['path'],
              scriptname=C['integrate_scriptname'])
"""check to see that the jobs for integrate_parallel have completed"""

af.job_check(n_jobs=C['integrate_njobs'],
             walltime=C['integrate_walltime'],
             scriptname=C['integrate_scriptname'],
             logfile=logfile)
"""combine the coefficients"""

cc.combine()
fn.WP('coefficients combined', logfile)
コード例 #22
0
ファイル: evalf.py プロジェクト: hrh741/MKS-Experimentation
def evalf(theta, euler, var_id, thr, LL_p):
    """variable assignments
    var_id 0: sigma'11
    var_id 1: sigma'22
    var_id 2: sigma'33
    var_id 3: sigma'12
    var_id 4: sigma'12
    var_id 5: sigma'23
    var_id 6: total shear rate
    var_id 7: w12
    var_id 8: w13
    var_id 9: w23
    """

    filename = "log_eval.txt"

    C = constants.const()

    f = h5py.File('coef.hdf5', 'r')
    coef = f.get('coef')[:, var_id]
    f.close()

    basis_info = gsh.gsh_basis_info()
    N_p_tmp = np.sum(
        basis_info[:, 0] <= LL_p)  # number of GSH bases to evaluate

    N_pts = theta.size
    """Select the desired set of coefficients"""

    msg = "cmax: %s" % C['cmax']
    fn.WP(msg, filename)

    cmat = np.unravel_index(np.arange(C['cmax']), C['N_tuple'])
    cmat = np.array(cmat).T

    cuttoff = thr * np.abs(coef).max()
    print "cutoff: %s" % cuttoff
    cuttoffvec = (np.abs(coef) > cuttoff) * \
                 (np.arange(C['cmax']) < N_p_tmp*C['N_q'])
    print "cuttoffvec.shape: %s" % str(cuttoffvec.shape)
    indxvec = np.arange(C['cmax'])[cuttoffvec]

    N_coef = indxvec.size
    pct_coef = 100. * N_coef / (N_p_tmp * C['N_q'])
    fn.WP("number of coefficients retained: %s" % N_coef, filename)
    fn.WP("percentage of coefficients retained %s%%" % np.round(pct_coef, 4),
          filename)
    """Evaluate the parts of the basis function individually"""

    st = time.time()

    p_U = np.unique(cmat[indxvec, 0])
    q_U = np.unique(cmat[indxvec, 1])

    all_basis_p = np.zeros([N_pts, C['N_p']], dtype='complex128')
    for p in p_U:
        all_basis_p[:, p] = np.squeeze(gsh.gsh_eval(euler, [p]))

    fn.WP("number of p basis functions used: %s" % p_U.size, filename)

    all_basis_q = np.zeros([N_pts, C['N_q']], dtype='complex128')
    for q in q_U:
        all_basis_q[:, q] = np.cos(q * np.pi * theta / C['L_th'])

    fn.WP("number of q basis functions used: %s" % q_U.size, filename)
    """Perform the prediction"""

    Y_ = np.zeros(theta.size, dtype='complex128')

    for ii in indxvec:

        p, q = cmat[ii, :]
        basis_p = all_basis_p[:, p]
        basis_q = all_basis_q[:, q]

        ep_set = basis_p * basis_q

        Y_ += coef[ii] * ep_set

        if np.mod(ii, 1000) == 0:
            msg = "evaluation complete for coefficient" +\
                  " %s out of %s" % (ii, N_coef)
            fn.WP(msg, filename)

    Ttime = np.round(time.time() - st, 3)
    msg = "total interpolation time: %ss" % Ttime
    fn.WP(msg, filename)
    msg = "interpolation time per point: %s" % (Ttime / theta.size)
    fn.WP(msg, filename)

    return Y_
コード例 #23
0
import db_functions as fn
import gsh_cub_tri_L0_16 as gsh
import h5py
import time
import sys
import constants


tnum = np.int64(sys.argv[1])
C = constants.const()
filename = 'log_integrate_parallel_%s.txt' % str(tnum).zfill(5)

"""calculate basis function indices"""

# cmax: total number of permutations of basis functions
fn.WP(str(C['cmax']), filename)

# cmat is the matrix containing all permutations of basis function indices
cmat = np.unravel_index(np.arange(C['cmax']), C['N_tuple'])
cmat = np.array(cmat).T

"""deal with the parallelization of this operation specifically pick range
of indxmat to calculate"""

# n_ii: number integrations per job
n_ii = np.int64(np.ceil(np.float(C['cmax'])/C['integrate_njobs']))
fn.WP(str(n_ii), filename)

ii_stt = tnum*n_ii  # start index
ii_end = ii_stt + n_ii  # end index
if ii_end > C['cmax']:
コード例 #24
0
    all_basis_p[:, p] = np.squeeze(gsh.gsh_eval(X, [p]))

all_basis_q = np.zeros([N_pts, N_q], dtype='complex128')
for q in xrange(N_q):

    all_basis_q[:, q] = np.cos(q * np.pi * theta / L_th)

all_basis_r = np.zeros([N_pts, N_r], dtype='complex128')
for r in xrange(N_r):

    all_basis_r[:, r] = np.cos(r * np.pi * (et_norm - a) / L_en)
"""Select the desired set of coefficients"""

cmax = N_p * N_q * N_r  # total number of permutations of basis functions

fn.WP(str(cmax), filename)

cmat = np.unravel_index(np.arange(cmax), [N_p, N_q, N_r])
cmat = np.array(cmat).T

cuttoff = thr * np.abs(coeff).max
indxvec = np.arange(cmax)[np.abs(coeff) > cuttoff]
"""Perform the prediction"""

Y_ = np.zeros(theta.size, dtype='complex128')

modval = np.round(cmax, 1 - len(str(cmax))) / 100
fn.WP("modval: %s" % modval, filename)

# for ii in xrange(10):
for ii in xrange(cmax):
コード例 #25
0
import sys
import constants

tnum = np.int64(sys.argv[1])
C = constants.const()
filename = 'log_basis_eval_gsh_%s.txt' % str(tnum).zfill(5)
""" Load info from collected simulation info file """

f = h5py.File(C['combineread_output'], 'r')
var_set = f.get('var_set')

g = np.zeros((C['n_eul'], 3), dtype='float64')
g[...] = var_set[:C['n_eul'], 1:4]

msg = "unique phi1: %s" % str(np.unique(g[:, 0]) * (180 / np.pi))
fn.WP(msg, filename)
msg = "unique Phi: %s" % str(np.unique(g[:, 1]) * (180 / np.pi))
fn.WP(msg, filename)
msg = "unique phi2: %s" % str(np.unique(g[:, 2]) * (180 / np.pi))
fn.WP(msg, filename)

f.close
""" Deal with the parallelization of this operation specifically pick range
of indxmat to calculate """

# n_ii: number of basis evaluations per job
n_ii = np.int64(np.ceil(np.float(C['N_p']) / C['basisgsh_njobs']))
fn.WP(str(n_ii), filename)

ii_stt = tnum * n_ii  # start index
ii_end = ii_stt + n_ii  # end index
コード例 #26
0
ファイル: Xcalc.py プロジェクト: hrh741/MKS-Experimentation
f.close

f = h5py.File('X_parts.hdf5', 'a')
""" first evalute the GSH basis functions """

st = time.time()

for p in xrange(N_p):

    vec = gsh.gsh(X, [p])

    set_id = 'p_%s' % p
    f.create_dataset(set_id, data=vec)

msg = "GSH basis evaluation complete: %ss" % np.round(time.time() - st, 3)
fn.WP(msg, filename)
""" second evalute the cosine basis functions """

st = time.time()

for q in xrange(N_q):

    vec = np.cos(2. * np.pi * q * theta / L_th)

    set_id = 'q_%s' % q
    f.create_dataset(set_id, data=vec)

msg = "Cosine basis evaluation complete: %ss" % np.round(time.time() - st, 3)
fn.WP(msg, filename)
""" third evalute the legendre basis functions """
コード例 #27
0
def combine():

    C = constants.const()
    filename = 'log_combine_coef.txt'

    st = time.time()  # start timing

    f = h5py.File(C['combineread_output'], 'r')
    var_set = f.get('var_set')

    theta = var_set[:, 0]

    X = np.zeros((theta.size, 3), dtype='float64')
    X[:, 0] = var_set[:, 1]  # phi1
    X[:, 1] = var_set[:, 2]  # phi
    X[:, 2] = var_set[:, 3]  # phi2

    et_norm = var_set[:, 4]
    Y = var_set[:, 5]

    f.close()
    """ Combine the results of the coefficient determination and
    calculate the value of the test function """
    # coeff is the combined vector of coefficients as calculated by the
    # orthogonal regression
    coef = np.zeros(C['cmax'], dtype='complex128')
    Y_ = np.zeros(Y.shape, dtype='complex128')

    c = 0
    for tnum in xrange(C['integrate_njobs']):

        fn.WP(str(tnum), filename)

        # load partially filled coefficient arrays from each file
        f = h5py.File('coef_prt_%s.hdf5' % str(tnum).zfill(5), 'r')
        coef_prt = f.get('coef_prt')[...]
        test_prt = f.get('test_prt')[...]
        f.close()

        Y_ += test_prt  # add pre-calculated portions to function prediction

        # insert pre-calculated coefficients to final list
        for ii in xrange(coef_prt.shape[0]):

            coef[c] = coef_prt[ii]
            c += 1

    # save the coefficients file
    f = h5py.File(C['combinecoef_coef'], 'w')
    f.create_dataset('coef', data=coef)
    f.close()

    Ttime = np.round(time.time() - st, 3)
    msg = "total interpolation time: %ss" % Ttime
    fn.WP(msg, filename)

    msg = str(Y_.shape)
    fn.WP(msg, filename)

    error = np.abs(np.real(Y_) - Y)

    msg = "min function value: %s" % Y.min()
    fn.WP(msg, filename)
    msg = "mean function values: %s" % Y.mean()
    fn.WP(msg, filename)
    msg = "max function value: %s" % Y.max()
    fn.WP(msg, filename)

    msg = "mean prediction value: %s" % np.real(Y_).mean()
    fn.WP(msg, filename)

    msg = "mean error: %s" % error.mean()
    fn.WP(msg, filename)
    msg = "std of error: %s" % error.std()
    fn.WP(msg, filename)
    msg = "max error: %s" % error.max()
    fn.WP(msg, filename)

    f = h5py.File(C['combinecoef_results'], 'w')

    results = np.zeros((Y.size, 8), dtype='complex128')
    results[:, 0] = theta
    results[:, 1:4] = X
    results[:, 4] = et_norm
    results[:, 5] = Y
    results[:, 6] = Y_
    results[:, 7] = error
    f.create_dataset('results', data=results)
    f.close()