コード例 #1
0
ファイル: simple_match.py プロジェクト: LabNAYO/kartoffel
def simple_match(filename, **kwargs):
    max_distance = kwargs['max_distance'] if 'max_distance' in kwargs else DEFAULT_MAX_DISTANCE
    with open(filename, 'r') as f:
        data = read_gps_file(f, delimiter=',')
    points = zip(data['lat'], data['long'])
    matches = []
    for i, point in enumerate(points):
        # Don't query the same point twice
        if i==0 or point != points[i-1]:
            point_merc, ways = query_ways_within_radius(point[0], point[1], max_distance)
            min_dist = sys.maxint
            min_way = None
            min_idx = None
            if ways:
                _add_segments(ways)
                _add_distances(ways, point_merc)
                for way in ways:
                    if way['osm_id'] < 0:
                        continue
                    local_min_idx, local_min_dist = min(enumerate(way['distances']), key=lambda x: x[1])
                    if local_min_dist <= min_dist:
                        min_dist = local_min_dist
                        min_idx = local_min_idx
                        min_way = way['osm_id']
        point_dict = {'point_index': i, 'point': point_merc, 'way': min_way, 'index_of_segment': min_idx}
        matches.append(point_dict)
    return matches
コード例 #2
0
def compute_emission_probabilities(observation, radius, n):
    #print(observation)
    lat, lon, course, speed = observation
    course = math.radians(-course+90)
    point, ways = query_ways_within_radius(lat, lon, radius)
    if ways is None or point is None:
        return
    ways = _add_segments(ways)
    ways = _add_distances(ways, point)
    ways = _add_tangents(ways)
    ways = _add_tangent_scores(ways, course)
    ways = _add_distance_scores(ways, GPS_SIGMA)
    ways = _add_emission_probabilities(ways)
    segments, probabilities = _get_top_n(ways, n)
    return segments, probabilities, point
コード例 #3
0
def compute_emission_probabilities(observation, radius, n):
    #print(observation)
    lat, lon, course, speed = observation
    course = math.radians(-course + 90)
    point, ways = query_ways_within_radius(lat, lon, radius)
    if ways is None or point is None:
        return
    ways = _add_segments(ways)
    ways = _add_distances(ways, point)
    ways = _add_tangents(ways)
    ways = _add_tangent_scores(ways, course)
    ways = _add_distance_scores(ways, GPS_SIGMA)
    ways = _add_emission_probabilities(ways)
    segments, probabilities = _get_top_n(ways, n)
    return segments, probabilities, point
コード例 #4
0
def simple_match(filename, **kwargs):
    max_distance = kwargs[
        'max_distance'] if 'max_distance' in kwargs else DEFAULT_MAX_DISTANCE
    with open(filename, 'r') as f:
        data = read_gps_file(f, delimiter=',')
    points = zip(data['lat'], data['long'])
    matches = []
    for i, point in enumerate(points):
        # Don't query the same point twice
        if i == 0 or point != points[i - 1]:
            point_merc, ways = query_ways_within_radius(
                point[0], point[1], max_distance)
            min_dist = sys.maxint
            min_way = None
            min_idx = None
            if ways:
                _add_segments(ways)
                _add_distances(ways, point_merc)
                for way in ways:
                    if way['osm_id'] < 0:
                        continue
                    local_min_idx, local_min_dist = min(enumerate(
                        way['distances']),
                                                        key=lambda x: x[1])
                    if local_min_dist <= min_dist:
                        min_dist = local_min_dist
                        min_idx = local_min_idx
                        min_way = way['osm_id']
        point_dict = {
            'point_index': i,
            'point': point_merc,
            'way': min_way,
            'index_of_segment': min_idx
        }
        matches.append(point_dict)
    return matches