コード例 #1
0
ファイル: process_grid.py プロジェクト: swun90/BOUT-dev
def force_balance(psixy, Rxy, Bpxy, Btxy, hthe, pxy):
    MU = 4.e-7 * numpy.pi

    a = old_div(DDX(psixy, Rxy), Rxy)
    b = MU * DDX(psixy, pxy) - Bpxy * DDX(psixy, Bpxy * hthe) / hthe

    return DDX(psixy, Btxy) + a * Btxy + old_div(b, Btxy)
コード例 #2
0
def newton_Bt ( psixy, Rxy, Btxy, Bpxy, pxy, hthe, mesh):
    #global  psi, a, b
    MU = 4.e-7*numpy.pi
  
    s = numpy.shape(Rxy)
    nx = s[0]
    ny = s[1]
  
    axy = old_div(DDX(psixy, Rxy), Rxy)
    bxy = MU*DDX(psixy, pxy) - Bpxy*DDX(psixy, Bpxy*hthe)/hthe
        
    Btxy2 = numpy.zeros((nx, ny))
    for i in range (ny) :
        psi = psixy[:,i]
        a = axy[:,i]
        b = bxy[:,i]
        print("Solving f for y=", i)
        sol=root(Bt_func, Btxy[:,i], args=(psi, a, b) )
        Btxy2[:,i] = sol.x
        
       
  
    # Average f over flux surfaces
    fxy = surface_average(Btxy2*Rxy, mesh)
    
    return old_div(fxy, Rxy)
コード例 #3
0
def correct_hthe ( Rxy, psixy, Btxy, Bpxy, hthe, pressure, fixhthe=None):
   # global xarr, fixpos, h0, a, b
  
    s = numpy.shape(Rxy)
    nx = s[0]
    ny = s[1]

    MU = 4.e-7*numpy.pi

    if fixhthe==None : fixhthe = 0
    if fixhthe < 0 : fixhthe = 0
    if fixhthe > nx-1 : fixhthe = nx-1

    fixpos = fixhthe
    print("FIX = ", fixhthe)
  
    axy =( Btxy*DDX(psixy, Btxy) + Bpxy*DDX(psixy, Bpxy)  
        + Btxy**2*DDX(psixy, Rxy)/Rxy + MU*DDX(psixy, pressure))
    bxy = Bpxy**2

    nh = numpy.zeros((nx, ny))
    nh[fixhthe,:] = hthe[fixhthe,:]
    for i in range (ny) : 
        print("Correcting y index ", i)
        xarr = psixy[:,i]
        a = axy[:,i]
        b = bxy[:,i]
  	h0 = hthe[fixhthe,i]
    
        if fixhthe == 0 :
            htmp = hthe[1::,i]
        elif fixhthe >= nx-1 :
            # fix last point
            htmp = hthe[0:(nx-1),i]
            fixhthe = nx-1
        else:
            # fix somewhere in the middle  
            htmp = numpy.append(hthe[0:(fixhthe),i], hthe[(fixhthe+1)::,i])
         

        sol = root(new_hfunc, htmp , args=(xarr,a,b,h0,fixpos))
        htmp=sol.x
        
        if fixhthe == 0 :
            nh[1::] = htmp
        elif fixhthe >= nx-1 :
            nh[0:(nx-1), i] = htmp
        else:
            nh[0:(fixhthe), i] = htmp[0:(fixhthe)]
            nh[(fixhthe+1)::, i]  = htmp[fixhthe::]
         
        w = numpy.size(numpy.where(nh[:,i] < 0.0))
        if w > 0 :
            print("Error in hthe solver: Negative solution at y = ", i)
            #sys.exit()
         
   

    return nh
コード例 #4
0
ファイル: process_grid.py プロジェクト: swun90/BOUT-dev
def solve_f(Rxy, psixy, pxy, Bpxy, hthe):

    MU = 4.e-7 * numpy.pi

    s = numpy.shape(Rxy)
    nx = s[0]
    ny = s[1]

    a = old_div(-DDX(psixy, Rxy), Rxy)
    b = -MU * DDX(psixy, pxy) - Bpxy * DDX(Bpxy * hthe) / hthe
コード例 #5
0
ファイル: adjust_jpar.py プロジェクト: xj361685640/BOUT-dev
def adjust_jpar(grid, smoothp=None, jpar=None, noplot=None):

    #type = numpy.type(grid)
    #if type == 'str' :
    #  #; Input is a string. Read in the data
    #  data = file_import(grid)
    #elif type == 'bunch.Bunch' :
    #  #; A structure, hopefully containing the grid data
    data = grid
    #else:
    #  print "ERROR: Not sure what to do with this type of grid input"
    #  return

    #; Find the inboard midplane. Use inboard since this is maximum B
    #; Matching here rather than outboard produces more realistic results
    #; (current doesn't reverse direction at edge)
    mid_ind = -1
    status = gen_surface(mesh=data)  # Start generator
    while True:
        period, yi, xi, last = gen_surface(last=None, xi=None, period=None)

        if period:
            mid_ind = numpy.argmin(data.Rxy[xi, yi])
            out_mid = numpy.argmax(data.Rxy[xi, yi])
        break

        if last == 1: break

    if mid_ind < 0:
        print("ERROR: No closed flux surfaces?")
        return

#; Calculate 2*b0xk dot Grad P

    kp = 2. * data.bxcvx * DDX(data.psixy, data.pressure)

    #; Calculate B^2 Grad_par(Jpar0)

    gj = data.Bxy**2 * grad_par(old_div(data.jpar0, data.Bxy), data)

    #; Generate Jpar0 by integrating kp (Pfirsch-Schluter current)
    #; Grad_par = (Bp / (B*hthe))*d/dy

    gparj = -kp * data.hthe / (data.Bxy * data.Bpxy)

    ps = data.Bxy * int_y(gparj, data, nosmooth='nosmooth') * data.dy

    #; In core region add divergence-free parallel current to match input at
    #; inboard midplane. Using inboard as if the outboard is matched then
    #; unphysical overshoots in jpar can result on the inboard side
    #
    #; Need to make sure this bootstrap current is always in the same
    #; direction
    dj = data.jpar0[:, mid_ind] - ps[:, mid_ind]
    ind = numpy.argmax(numpy.abs(dj))
    s = numpy.sign(dj[ind])

    w = numpy.where(dj * s < 0.0)[0]  # find where contribution reverses
    if w.size > 0: dj[w] = 0.0  # just zero in this region

    jpar = ps
    status = gen_surface(mesh=data)  # Start generator
    while True:
        period, yi, xi, last = gen_surface(period=period, last=last, xi=xi)

        if period == None:
            # Due to multi-point differencing, dp/dx can be non-zero outside separatrix
            ps[xi, yi] = 0.0
            jpar[xi, yi] = 0.0

        w = numpy.size(numpy.where(yi == mid_ind))

        if (w != 0) and period != None:
            # Crosses midplane

            dj_b = old_div(dj[xi], data.Bxy[xi, mid_ind])
            jpar[xi, yi] = jpar[xi, yi] + dj_b * data.Bxy[xi, yi]

        if last == 1: break

# if noplot!=None :
#  WINDOW, xsize=800, ysize=800
#  !P.multi=[0,2,2,0,0]
#  SURFACE, data.jpar0, tit="Input Jpar0", chars=2
#  SURFACE, jpar, tit="New Jpar0", chars=2
#  PLOT, data.jpar0[0,*], tit="jpar at x=0. Solid=input", yr=[MIN([data.jpar0[0,*],jpar[0,*]]), $
#                                                             MAX([data.jpar0[0,*],jpar[0,*]])]
#  OPLOT, jpar[0,*], psym=1
#
#  #;x = data.ixseps1-1
#  #;PLOT, data.jpar0[x,*], tit="Jpar at x="+STR(x)+" Solid=input", $
#  #;  yr=[MIN([data.jpar0[x,*],jpar[x,*]]), $
#  #;      MAX([data.jpar0[x,*],jpar[x,*]])]
#  #;OPLOT, jpar[x,*], psym=1
#
#  y = out_mid
#  PLOT, data.jpar0[*,y], tit="Jpar at y="+STR(y)+" Solid=input", $
#    yr=[MIN([data.jpar0[*,y],jpar[*,y]]), $
#        MAX([data.jpar0[*,y],jpar[*,y]])]
#  OPLOT, jpar[*,y], psym=1

    return jpar
コード例 #6
0
ファイル: process_grid.py プロジェクト: swun90/BOUT-dev
def process_grid(rz_grid,
                 mesh,
                 output=None,
                 poorquality=None,
                 gui=None,
                 parent=None,
                 reverse_bt=None,
                 curv=None,
                 smoothpressure=None,
                 smoothhthe=None,
                 smoothcurv=None,
                 settings=None):

    if settings == None:
        # Create an empty structure
        settings = Bunch(dummy=0)

        # Check settings
        settings.calcp = -1
        settings.calcbt = -1
        settings.calchthe = -1
        settings.calcjpar = -1

# ;CATCH, err
# ;IF err NE 0 THEN BEGIN
# ;  PRINT, "PROCESS_GRID failed"
#;  PRINT, "   Error message: "+!ERROR_STATE.MSG
# ;  CATCH, /cancel
# ;  RETURN
# ;ENDIF

    MU = 4.e-7 * numpy.pi

    poorquality = 0

    if output == None: output = "bout.grd.nc"

    # Size of the mesh
    nx = numpy.int(numpy.sum(mesh.nrad))
    ny = numpy.int(numpy.sum(mesh.npol))

    # Find the midplane
    ymid = 0
    status = gen_surface(mesh=mesh)  # Start generator

    while True:
        period, yi, xi, last = gen_surface(period=None, last=None, xi=None)
        if period:
            rm = numpy.max(mesh.Rxy[xi, yi])
            ymidindx = numpy.argmax(mesh.Rxy[xi, yi])
            ymid = yi[ymidindx]
            break

        if last == 1: break

    Rxy = numpy.asarray(mesh.Rxy)
    Zxy = numpy.asarray(mesh.Zxy)
    psixy = mesh.psixy * mesh.fnorm + mesh.faxis  # Non-normalised psi

    pressure = numpy.zeros((nx, ny))

    # Use splines to interpolate pressure profile
    status = gen_surface(mesh=mesh)  # Start generator
    while True:
        # Get the next domain
        period, yi, xi, last = gen_surface(period=period, last=last, xi=xi)
        if period:
            # Pressure only given on core surfaces
            # pressure[xi,yi] = SPLINE(rz_grid.npsigrid, rz_grid.pres, mesh.psixy[xi,yi[0]], /double)
            sol = interpolate.UnivariateSpline(rz_grid.npsigrid,
                                               rz_grid.pres,
                                               s=1)
            pressure[xi, yi] = sol(mesh.psixy[xi, yi[0]])

        else:

            pressure[xi, yi] = rz_grid.pres[numpy.size(rz_grid.pres) - 1]

        if last == 1: break

    # Add a minimum amount
    if numpy.min(pressure) < 1.0e-2 * numpy.max(pressure):
        print("****Minimum pressure is very small:", numpy.min(pressure))
        print("****Setting minimum pressure to 1% of maximum")
        pressure = pressure + 1e-2 * numpy.max(pressure)

    if smoothpressure != None:
        p0 = pressure[:, ymid]  # Keep initial pressure for comparison
        while True:
            #!P.multi=[0,0,2,0,0]
            fig = figure()
            plot(p0,
                 xtitle="X index",
                 ytitle="pressure at y=" + numpy.strip(numpy.str(ymid), 2) +
                 " dashed=original",
                 color=1,
                 lines=1)
            plot(pressure[:, ymid], color=1)
            plot(deriv(p0),
                 xtitle="X index",
                 ytitle="DERIV(pressure)",
                 color=1,
                 lines=1)
            plot(deriv(pressure[:, ymid]), color=1)
            sm = query_yes_no(
                "Smooth pressure profile?")  #, gui=gui, dialog_parent=parent)
            if sm:
                # Smooth the pressure profile

                p2 = pressure
                for i in range(6):
                    status = gen_surface(mesh=mesh)  # Start generator
                    while True:
                        # Get the next domain
                        period, yi, xi, last = gen_surface(period=period,
                                                           last=last,
                                                           xi=xi)

                        if (xi > 0) and (xi < (nx - 1)):
                            for j in range(numpy.size(yi)):
                                p2[xi,
                                   yi[j]] = (0.5 * pressure[xi, yi[j]] + 0.25 *
                                             (pressure[xi - 1, yi[j]] +
                                              pressure[xi + 1, yi[j]]))

                        # Make sure it's still constant on flux surfaces
                        p2[xi, yi] = numpy.mean(p2[xi, yi])
                        if last != None: break
                    pressure = p2

            if sm == 0: break

    if numpy.min(pressure) < 0.0:
        print("")
        print("============= WARNING ==============")
        print("Poor quality equilibrium: Pressure is negative")
        print("")
        poorquality = 1

    dpdpsi = DDX(psixy, pressure)

    #;IF MAX(dpdpsi)*mesh.fnorm GT 0.0 THEN BEGIN
    #;  PRINT, ""
    #;  PRINT, "============= WARNING =============="
    #;  PRINT, "Poor quality equilibrium: Pressure is increasing radially"
    #;  PRINT, ""
    #;  poorquality = 1
    #;ENDIF

    # Grid spacing
    dx = numpy.zeros((nx, ny))
    for y in range(ny):
        dx[0:(nx - 1), y] = psixy[1::, y] - psixy[0:(nx - 1), y]
        dx[nx - 1, y] = dx[nx - 2, y]

    # Sign
    bpsign = 1.
    xcoord = psixy
    if numpy.min(dx) < 0.:
        bpsign = -1.
        dx = -dx  # dx always positive
        xcoord = -xcoord

    dtheta = 2. * numpy.pi / numpy.float(ny)
    dy = numpy.zeros((nx, ny)) + dtheta

    # B field components
    # Following signs mean that psi increasing outwards from
    # core to edge results in Bp clockwise in the poloidal plane
    # i.e. in the positive Grad Theta direction.

    Brxy = old_div(mesh.dpsidZ, Rxy)
    Bzxy = old_div(-mesh.dpsidR, Rxy)
    Bpxy = numpy.sqrt(Brxy**2 + Bzxy**2)

    # Determine direction (dot B with grad y vector)

    dot = (Brxy[0, ymid] * (Rxy[0, ymid + 1] - Rxy[0, ymid - 1]) +
           Bzxy[0, ymid] * (Zxy[0, ymid + 1] - Zxy[0, ymid - 1]))

    if dot < 0.:
        print(
            "**** Poloidal field is in opposite direction to Grad Theta -> Bp negative"
        )
        Bpxy = -Bpxy
        if bpsign > 0: sys.exit()  # Should be negative
        bpsign = -1.0
    else:
        if bpsign < 0: sys.exit()  # Should be positive
        bpsign = 1.

# Get toroidal field from poloidal current function fpol
    Btxy = numpy.zeros((nx, ny))
    fprime = numpy.zeros((nx, ny))
    fp = deriv(rz_grid.npsigrid * (rz_grid.sibdry - rz_grid.simagx),
               rz_grid.fpol)

    status = gen_surface(mesh=mesh)  # Start generator
    while True:
        # Get the next domain
        period, yi, xi, last = gen_surface(period=period, last=period, xi=xi)

        if period:
            # In the core
            #fpol = numpy.interp(rz_grid.fpol, rz_grid.npsigrid, mesh.psixy[xi,yi], /spline)

            sol = interpolate.UnivariateSpline(rz_grid.npsigrid,
                                               rz_grid.fpol,
                                               s=1)
            #  fpol = SPLINE(rz_grid.npsigrid, rz_grid.fpol, mesh.psixy[xi,yi[0]], 'double')
            fpol = sol(mesh.psixy[xi, yi[0]])

            sol = interpolate.UnivariateSpline(rz_grid.npsigrid, fp, s=1)
            # fprime[xi,yi] = SPLINE(rz_grid.npsigrid, fp, mesh.psixy[xi,yi[0]], 'double')
            fprime[xi, yi] = sol(mesh.psixy[xi, yi[0]])

        else:
            # Outside core. Could be PF or SOL
            fpol = rz_grid.fpol[numpy.size(rz_grid.fpol) - 1]
            fprime[xi, yi] = 0.

        Btxy[xi, yi] = old_div(fpol, Rxy[xi, yi])

        if last == 1: break

    # Total B field
    Bxy = numpy.sqrt(Btxy**2 + Bpxy**2)

    #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    # Go through the domains to get a starting estimate
    # of hthe
    hthe = numpy.zeros((nx, ny))

    #   Pick a midplane index
    status = gen_surface(mesh=mesh)  # Start generator
    while True:
        # Get the next domain
        period, yi, xi, last = gen_surface(period=period, last=last, xi=xi)

        if period:
            # In the core
            rmax = numpy.argmax(Rxy[xi, yi])
            ymidplane = yi[rmax]
            break

        if last == 1: break

    status = gen_surface(mesh=mesh)  # Start generator
    while True:
        # Get the next domain
        period, yi, xi, last = gen_surface(period=period, last=last, xi=xi)

        n = numpy.size(yi)

        # Get distance along this line

        if period:

            # Periodic, so can use FFT
            #drdi = REAL_PART(fft_deriv(Rxy[xi, yi]))
            #dzdi = REAL_PART(fft_deriv(Zxy[xi, yi]))
            line = numpy.append(Rxy[xi, yi[n - 1::]], Rxy[xi, yi])
            line = numpy.append(line, Rxy[xi, yi[0:1]])

            drdi = deriv(line)[1:n + 1]

            line = numpy.append(Zxy[xi, yi[n - 1::]], Zxy[xi, yi])
            line = numpy.append(line, Zxy[xi, yi[0:1]])

            dzdi = deriv(line)[1:n + 1]
        else:
            # Non-periodic
            drdi = numpy.gradient(Rxy[xi, yi])
            dzdi = numpy.gradient(Zxy[xi, yi])

        dldi = numpy.sqrt(drdi**2 + dzdi**2)

        if 0:

            # Need to smooth to get sensible results
            if period:
                n = numpy.size(dldi)
                line = numpy.append(dldi[(n - 2)::], dldi)  # once
                line = numpy.append(line, dldi[0:2])
                dldi = SMOOTH(line, 5)[4:(n + 4)]

                line = numpy.append(dldi[(n - 2)::], dldi)  #twice
                line = numpy.append(line, dldi[0:2])
                dldi = SMOOTH(line, 5)[4:(n + 4)]

                line = numpy.append(dldi[(n - 2)::], dldi)  # three
                line = numpy.append(line, dldi[0:2])
                dldi = SMOOTH(line, 5)[4:(n + 4)]

            else:
                line = dldi
                dldi = SMOOTH(line, 5)[2:n + 2]
                line = dldi
                dldi = SMOOTH(line, 5)[2:n + 2]
                line = dldi
                dldi = SMOOTH(dldi, 5)[2:n + 2]

        hthe[xi, yi] = old_div(dldi, dtheta)  # First estimate of hthe

        # Get outboard midplane
        if period and xi == 0:
            m = numpy.argmax(Rxy[0, yi])
            ymidplane = yi[m]

        if last == 1: break

    print("Midplane index ", ymidplane)

    fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, hthe, pressure)
    print("Force imbalance: ", numpy.mean(numpy.abs(fb0)),
          numpy.max(numpy.abs(fb0)))

    #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    # Correct pressure using hthe

    print("Calculating pressure profile from force balance")

    try:

        # Calculate force balance
        dpdx = old_div((-Bpxy * DDX(xcoord, Bpxy * hthe) -
                        Btxy * hthe * DDX(xcoord, Btxy) -
                        (Btxy * Btxy * hthe / Rxy) * DDX(xcoord, Rxy)),
                       (MU * hthe))

        # Surface average
        dpdx2 = surface_average(dpdx, mesh)

        pres = numpy.zeros((nx, ny))
        # Integrate to get pressure
        for i in range(ny):
            pres[:, i] = int_func(psixy[:, i], dpdx2[:, i])
            pres[:, i] = pres[:, i] - pres[nx - 1, i]

        status = gen_surface(mesh=mesh)  # Start generator
        while True:
            # Get the next domain
            period, yi, xi, last = gen_surface(period=None, last=None, xi=None)

            ma = numpy.max(pres[xi, yi])

            for i in range(numpy.size(yi)):
                pres[:, yi[i]] = pres[:, yi[i]] - pres[xi, yi[i]] + ma

            if last == 1: break

        pres = pres - numpy.min(pres)

        # Some sort of smoothing here?

        fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, hthe, pres)
        print("Force imbalance: ", numpy.mean(numpy.abs(fb0)),
              numpy.max(numpy.abs(fb0)))

        #!P.MULTI=[0,0,2,0,0]
        fig = figure(figsize=(7, 11))
        subplots_adjust(left=.07,
                        bottom=.07,
                        right=0.95,
                        top=0.95,
                        wspace=.3,
                        hspace=.25)

        SURFACE(pressure, fig, xtitle="X", ytitle="Y", var='Pa', sub=[2, 1, 1])
        title("Input pressure")
        SURFACE(pres, fig, xtitle="X", ytitle="Y", var='Pa', sub=[2, 1, 2])
        title("New pressure")
        #  arrange the plot on the screen
        #      mngr = get_current_fig_manager()
        #      geom = mngr.window.geometry()
        #      x,y,dx,dy = geom.getRect()
        #      mngr.window.setGeometry(0, 0, dx, dy)
        #
        show(block=False)

        calcp = settings.calcp

        if calcp == -1:
            calcp = query_yes_no(
                "Keep new pressure?")  #, gui=gui, dialog_parent=parent)
        else:
            time.sleep(2)
        if calcp == 1:
            pressure = pres
            dpdpsi = dpdx2

    except Exception:
        print("WARNING: Pressure profile calculation failed: "
              )  #, !ERROR_STATE.MSG
        pass

    #CATCH, /cancel

#;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
# Correct f = RBt using force balance

    calcbt = settings.calcbt
    if calcbt == -1:
        calcbt = query_yes_no("Correct f=RBt using force balance?"
                              )  #, gui=gui, dialog_parent=parent)
    if calcbt == 1:

        new_Btxy = newton_Bt(psixy, Rxy, Btxy, Bpxy, pres, hthe, mesh)

        fb0 = force_balance(psixy, Rxy, Bpxy, new_Btxy, hthe, pressure)
        print("force imbalance: ", numpy.mean(numpy.abs(fb0)),
              numpy.max(numpy.abs(fb0)))

        fig = figure(figsize=(7, 11))
        subplots_adjust(left=.07,
                        bottom=.07,
                        right=0.95,
                        top=0.95,
                        wspace=.3,
                        hspace=.25)

        subplot(211)
        SURFACE(Btxy, fig, xtitle="X", ytitle="Y", var='T', sub=[2, 1, 1])
        title("Input Bt")
        subplot(212)
        SURFACE(new_Btxy, fig, xtitle="X", ytitle="Y", var='T', sub=[2, 1, 2])
        title("New Bt")
        #  arrange the plot on the screen
        #mngr = get_current_fig_manager()
        #geom = mngr.window.geometry()
        #x,y,dx,dy = geom.getRect()
        #mngr.window.setGeometry(600, 0, dx, dy)

        show(block=False)

        calcbt = settings.calcbt
        if calcbt == -1:
            calcbt = query_yes_no(
                "Keep new Bt?")  #, gui=gui, dialog_parent=parent)
        if calcbt == 1:
            Btxy = new_Btxy
            Bxy = numpy.sqrt(Btxy**2 + Bpxy**2)

#;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
# CALCULATE HTHE
# Modify hthe to fit force balance using initial guess
# Does not depend on signs
#;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

    calchthe = settings.calchthe
    if calchthe == -1:
        calchthe = query_yes_no("Adjust hthe using force balance?"
                                )  #, gui=gui, dialog_parent=parent)
    if calchthe == 1:
        # This doesn't behave well close to the x-points
        fixhthe = numpy.int(old_div(nx, 2))
        nh = correct_hthe(Rxy,
                          psixy,
                          Btxy,
                          Bpxy,
                          hthe,
                          pressure,
                          fixhthe=fixhthe)

        fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, nh, pressure)
        print("Force imbalance: ", numpy.mean(numpy.abs(fb0)),
              numpy.max(numpy.abs(fb0)))

        print("numpy.maximum difference in hthe: ",
              numpy.max(numpy.abs(hthe - nh)))
        print("numpy.maximum percentage difference: ",
              100. * numpy.max(numpy.abs(old_div((hthe - nh), hthe))))

        #!P.multi=[0,0,1,0,0]
        fig = figure(figsize=(7, 4))
        title("Poloidal arc length at midplane. line is initial estimate")
        plot(hthe[:, 0], '-')
        plot(nh[:, 0], 'r-+')
        #  arrange the plot on the screen
        #mngr = get_current_fig_manager()
        #geom = mngr.window.geometry()
        #x,y,dx,dy = geom.getRect()
        #mngr.window.setGeometry(0, 1150, dx, dy)

        show(block=False)

        if query_yes_no(
                "Keep new hthe?") == 1:  #, gui=gui, dialog_parent=parent) :
            hthe = nh

    if smoothhthe != None:
        # Smooth hthe to prevent large jumps in X or Y. This
        # should be done by creating a better mesh in the first place

        # Need to smooth in Y and X otherwise smoothing in X
        # produces discontinuities in Y
        hold = hthe

        if 1:
            # Nonlinear smoothing. Tries to smooth only regions with large
            # changes in gradient

            hthe = 0.  # smooth_nl(hthe, mesh)

        else:
            # Just use smooth in both directions

            for i in range(ny):
                hthe[:, i] = SMOOTH(SMOOTH(hthe[:, i], 10), 10)

        status = gen_surface(mesh=mesh)  # Start generator
        while True:
            # Get the next domain
            period, yi, xi, last = gen_surface(period=None, last=None, xi=None)

            n = numpy.size(yi)

            if period:
                hthe[xi, yi] = (SMOOTH([
                    hthe[xi, yi[(n - 4):(n - 1)]], hthe[xi, yi], hthe[xi,
                                                                      yi[0:3]]
                ], 4))[4:(n + 3)]
            else:
                hthe[xi, yi] = SMOOTH(hthe[xi, yi], 4)

            if last == 1: break

    # Calculate field-line pitch
    pitch = hthe * Btxy / (Bpxy * Rxy)

    # derivative with psi
    dqdpsi = DDX(psixy, pitch)

    qinty, qloop = int_y(pitch,
                         mesh,
                         loop=0,
                         nosmooth='nosmooth',
                         simple='simple')
    qinty = qinty * dtheta
    qloop = qloop * dtheta

    sinty = int_y(dqdpsi, mesh, nosmooth='nosmooth', simple='simple') * dtheta

    # NOTE: This is only valid in the core
    pol_angle = numpy.zeros((nx, ny))
    for i in range(nx):
        pol_angle[i, :] = 2.0 * numpy.pi * qinty[i, :] / qloop[i]

    #;;;;;;;;;;;;;;;;;;; THETA_ZERO ;;;;;;;;;;;;;;;;;;;;;;
    # re-set zshift to be zero at the outboard midplane

    print("MIDPLANE INDEX = ", ymidplane)

    status = gen_surface(mesh=mesh)  # Start generator
    while True:
        # Get the next domain
        period, yi, xi, last = gen_surface(period=None, last=None, xi=None)

        w = numpy.size(numpy.where(yi == ymidplane))
        if w > 0:
            # Crosses the midplane
            qinty[xi, yi] = qinty[xi, yi] - qinty[xi, ymidplane]
            sinty[xi, yi] = sinty[xi, yi] - sinty[xi, ymidplane]
        else:
            # Doesn't include a point at the midplane
            qinty[xi, yi] = qinty[xi, yi] - qinty[xi, yi[0]]
            sinty[xi, yi] = sinty[xi, yi] - sinty[xi, yi[0]]

        if last == 1: break

    print("")
    print("==== Calculating curvature ====")

    #;;;;;;;;;;;;;;;;;;; CURVATURE ;;;;;;;;;;;;;;;;;;;;;;;
    # Calculating b x kappa

    if curv == None:

        print("*** Calculating curvature in toroidal coordinates")

        thetaxy = numpy.zeros((nx, ny))
        status = gen_surface(mesh=mesh)  # Start generator
        while True:
            # Get the next domain
            period, yi, xi, last = gen_surface(period=None, last=None, xi=None)
            thetaxy[xi,
                    yi] = numpy.arange(numpy.size(yi)).astype(float) * dtheta
            if last == 1: break

        bxcv = curvature(nx,
                         ny,
                         Rxy,
                         Zxy,
                         Brxy,
                         Bzxy,
                         Btxy,
                         psixy,
                         thetaxy,
                         hthe,
                         mesh=mesh)

        bxcvx = bpsign * bxcv.psi
        bxcvy = bxcv.theta
        bxcvz = bpsign * (bxcv.phi - sinty * bxcv.psi - pitch * bxcv.theta)

        # x borders
        bxcvx[0, :] = bxcvx[1, :]
        bxcvx[nx - 1, :] = bxcvx[nx - 2, :]

        bxcvy[0, :] = bxcvy[1, :]
        bxcvy[nx - 1, :] = bxcvy[nx - 2, :]

        bxcvz[0, :] = bxcvz[1, :]
        bxcvz[nx - 1, :] = bxcvz[nx - 2, :]

    elif curv == 1:
        # Calculate on R-Z mesh and then interpolate onto grid
        # ( cylindrical coordinates)

        print("*** Calculating curvature in cylindrical coordinates")

        bxcv = rz_curvature(rz_grid)

        # DCT methods cause spurious oscillations
        # Linear interpolation seems to be more robust
        bxcv_psi = numpy.interp(bxcv.psi, mesh.Rixy, mesh.Zixy)
        bxcv_theta = old_div(numpy.interp(bxcv.theta, mesh.Rixy, mesh.Zixy),
                             hthe)
        bxcv_phi = numpy.interp(bxcv.phi, mesh.Rixy, mesh.Zixy)

        # If Bp is reversed, then Grad x = - Grad psi
        bxcvx = bpsign * bxcv_psi
        bxcvy = bxcv_theta
        bxcvz = bpsign * (bxcv_phi - sinty * bxcv_psi - pitch * bxcv_theta)
    elif curv == 2:
        # Curvature from Curl(b/B)

        bxcvx = bpsign * (Bpxy * Btxy * Rxy * DDY(old_div(1., Bxy), mesh) /
                          hthe)
        bxcvy = -bpsign * Bxy * Bpxy * DDX(xcoord,
                                           Btxy * Rxy / Bxy ^ 2) / (2. * hthe)
        bxcvz = Bpxy ^ 3 * DDX(xcoord, old_div(
            hthe, Bpxy)) / (2. * hthe * Bxy) - Btxy * Rxy * DDX(
                xcoord, old_div(Btxy, Rxy)) / (2. * Bxy) - sinty * bxcvx

    else:
        # calculate in flux coordinates.

        print("*** Calculating curvature in flux coordinates")

        dpb = numpy.zeros((nx, ny))  # quantity used for y and z components

        for i in range(ny):
            dpb[:, i] = MU * dpdpsi / Bxy[:, i]

        dpb = dpb + DDX(xcoord, Bxy)

        bxcvx = bpsign * (Bpxy * Btxy * Rxy * DDY(old_div(1., Bxy), mesh) /
                          hthe)
        bxcvy = bpsign * (Bpxy * Btxy * Rxy * dpb / (hthe * Bxy ^ 2))
        bxcvz = -dpb - sinty * bxcvx

    if smoothcurv:
        # Smooth curvature to prevent large jumps

        # Nonlinear smoothing. Tries to smooth only regions with large
        # changes in gradient

        bz = bxcvz + sinty * bxcvx

        print("Smoothing bxcvx...")
        bxcvx = 0.  #smooth_nl(bxcvx, mesh)
        print("Smoothing bxcvy...")
        bxcvy = 0.  #smooth_nl(bxcvy, mesh)
        print("Smoothing bxcvz...")
        bz = 0.  #smooth_nl(bz, mesh)

        bxcvz = bz - sinty * bxcvx

#;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
# CALCULATE PARALLEL CURRENT
#
# Three ways to calculate Jpar0:
# 1. From fprime and pprime
# 2. From Curl(B) in field-aligned coords
# 3. From the curvature
#
# Provides a way to check if Btor should be reversed
#
#;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

    print("")
    print("==== Calculating parallel current ====")

    jpar0 = -Bxy * fprime / MU - Rxy * Btxy * dpdpsi / Bxy

    # Set to zero in PF and SOL
    status = gen_surface(mesh=mesh)  # Start generator
    while True:
        # Get the next domain
        period, yi, xi, last = gen_surface(period=None, last=None, xi=None)

        if period == None: jpar0[xi, yi] = 0.0
        if last == 1: break

# Curl(B) expression for Jpar0 (very noisy usually)
    j0 = (bpsign * ((Bpxy * Btxy * Rxy / (Bxy * hthe)) *
                    (DDX(xcoord, Bxy**2 * hthe / Bpxy) - bpsign * Btxy * Rxy *
                     DDX(xcoord, Btxy * hthe /
                         (Rxy * Bpxy))) - Bxy * DDX(xcoord, Btxy * Rxy)) / MU)

    # Create a temporary mesh structure to send to adjust_jpar
    tmp_mesh = Bunch(mesh,
                     bxcvx=bxcvx,
                     bxcvy=bxcvy,
                     bxcvz=bxcvz,
                     Bpxy=Bpxy,
                     Btxy=Btxy,
                     Bxy=Bxy,
                     dx=dx,
                     dy=dy,
                     hthe=hthe,
                     jpar0=jpar0,
                     pressure=pressure)
    tmp_mesh.psixy = psixy

    jpar = adjust_jpar(tmp_mesh, noplot='noplot')

    #!P.multi=[0,2,2,0,0]

    fig = figure(figsize=(15, 11))
    subplots_adjust(left=.07,
                    bottom=.07,
                    right=0.95,
                    top=0.95,
                    wspace=.3,
                    hspace=.25)

    subplot(221)
    SURFACE(jpar0, fig, xtitle="X", ytitle="Y", var='A', sub=[2, 2, 1])
    title("Jpar from F' and P'")

    subplot(222)
    SURFACE(jpar, fig, xtitle="X", ytitle="Y", var='A', sub=[2, 2, 2])
    title("Jpar from curvature")

    subplot(223)
    plot(jpar0[0, :], '-', jpar[0, :], '+')
    ylim([
        numpy.min([jpar0[0, :], jpar[0, :]]),
        numpy.max([jpar0[0, :], jpar[0, :]])
    ])
    title("jpar at x=0. Solid from f' and p'")

    subplot(224)
    plot(jpar0[:, ymidplane], '-', jpar[:, ymidplane], '+')
    ylim([
        numpy.min([jpar0[:, ymidplane], jpar[:, ymidplane]]),
        numpy.max([jpar0[:, ymidplane], jpar[:, ymidplane]])
    ])

    title("Jpar at y=" + numpy.str(ymidplane) + " Solid from f' and p'")

    #  arrange the plot on the screen
    #mngr = get_current_fig_manager()
    #geom = mngr.window.geometry()
    #x,y,dx,dy = geom.getRect()
    #mngr.window.setGeometry(1350, 0, dx, dy)

    show(block=False)

    # !P.multi=0

    calcjpar = settings.calcjpar
    if calcjpar == -1:
        calcjpar = query_yes_no(
            "Use Jpar from curvature?")  #, gui=gui, dialog_parent=parent)
    if calcjpar == True:
        jpar0 = jpar

    if 0:

        # Try smoothing jpar0 in psi, preserving zero points and maxima
        jps = jpar0
        for y in range(ny):
            j = jpar0[:, y]
            js = j
            ma = numpy.max(numpy.abs(j))
            ip = numpy.argmax(numpy.abs(j))
            if (ma < 1.e-4) or (ip == 0):
                jps[:, y] = j

            level = 1.
            #i0 = MAX(WHERE(ABS(j[0:ip]) LT level))
            i1 = numpy.min(numpy.where(numpy.abs(j[ip::]) < level))

            #IF i0 LE 0 THEN i0 = 1
            i0 = 1

            if i1 == -1:
                i1 = nx - 2
            else:
                i1 = i1 + ip

            if (ip <= i0) or (ip >= i1):

                # Now preserve starting and end points, and peak value
                div = numpy.int(old_div(
                    (i1 - i0),
                    10)) + 1  # reduce number of points by this factor

                inds = [i0]  # first point
                for i in [i0 + div, ip - div, div]:
                    inds = [inds, i]
                inds = [inds, ip]  # Put in the peak point

                # Calculate spline interpolation of inner part

                js[0:ip] = spline_mono(inds,
                                       j[inds],
                                       numpy.arange(ip + 1),
                                       yp0=(j[i0] - j[i0 - 1]),
                                       ypn_1=0.0)

                inds = [ip]  # peak point
                for i in [ip + div, i1 - div, div]:
                    inds = [inds, i]

                inds = [inds, i1]  # Last point
                js[ip:i1] = spline_mono(inds,
                                        j[inds],
                                        ip + numpy.arange(i1 - ip + 1),
                                        yp0=0.0,
                                        ypn_1=(j[i1 + 1] - j[i1]))

                jps[:, y] = js

#;;;;;;;;;;;;;;;;;;; TOPOLOGY ;;;;;;;;;;;;;;;;;;;;;;;
# Calculate indices for backwards-compatibility

    nr = numpy.size(mesh.nrad)
    np = numpy.size(mesh.npol)
    if (nr == 2) and (np == 3):
        print("Single null equilibrium")

        ixseps1 = mesh.nrad[0]
        ixseps2 = nx

        jyseps1_1 = mesh.npol[0] - 1
        jyseps1_2 = mesh.npol[0] + numpy.int(old_div(mesh.npol[1], 2))
        ny_inner = jyseps1_2
        jyseps2_1 = jyseps1_2
        jyseps2_2 = ny - mesh.npol[2] - 1

    elif (nr == 3) and (np == 6):
        print("Double null equilibrium")

        ixseps1 = mesh.nrad[0]
        ixseps2 = ixseps1 + mesh.nrad[1]

        jyseps1_1 = mesh.npol[0] - 1
        jyseps2_1 = jyseps1_1 + mesh.npol[1]

        ny_inner = jyseps2_1 + mesh.npol[2] + 1

        jyseps1_2 = ny_inner + mesh.npol[3] - 1
        jyseps2_2 = jyseps1_2 + mesh.npol[4]

    elif (nr == 1) and (np == 1):

        print("Single domain")

        ixseps1 = nx
        ixseps2 = nx

        jyseps1_1 = -1
        jyseps1_2 = numpy.int(old_div(ny, 2))
        jyseps2_1 = numpy.int(old_div(ny, 2))
        ny_inner = numpy.int(old_div(ny, 2))
        jyseps2_2 = ny - 1

    else:
        print("***************************************")
        print("* WARNING: Equilibrium not recognised *")
        print("*                                     *")
        print("*  Check mesh carefully!              *")
        print("*                                     *")
        print("*  Contact Ben Dudson                 *")
        print("*      [email protected]     *")
        print("***************************************")
        ixseps1 = -1
        ixseps2 = -1

        jyseps1_1 = -1
        jyseps1_2 = numpy.int(old_div(ny, 2))
        jyseps2_1 = numpy.int(old_div(ny, 2))
        ny_inner = numpy.int(old_div(ny, 2))
        jyseps2_2 = ny - 1

    print("Generating plasma profiles:")

    print("  1. Flat temperature profile")
    print("  2. Flat density profile")
    print("  3. Te proportional to density")
    while True:
        opt = input("Profile option:")
        if eval(opt) >= 1 and eval(opt) <= 3: break

    if eval(opt) == 1:
        # flat temperature profile

        print("Setting flat temperature profile")
        while True:
            Te_x = eval(input("Temperature (eV):"))

            # get density
            Ni = old_div(pressure, (2. * Te_x * 1.602e-19 * 1.0e20))

            print("numpy.maximum density (10^20 m^-3):", numpy.max(Ni))

            done = query_yes_no("Is this ok?")
            if done == 1: break

        Te = numpy.zeros((nx, ny)) + Te_x
        Ti = Te
        Ni_x = numpy.max(Ni)
        Ti_x = Te_x
    elif eval(opt) == 2:
        print("Setting flat density profile")

        while True:
            Ni_x = eval(input("Density [10^20 m^-3]:"))

            # get temperature
            Te = old_div(pressure, (2. * Ni_x * 1.602e-19 * 1.0e20))

            print("numpy.maximum temperature (eV):", numpy.max(Te))
            if query_yes_no("Is this ok?") == 1: break

        Ti = Te
        Ni = numpy.zeros((nx, ny)) + Ni_x
        Te_x = numpy.max(Te)
        Ti_x = Te_x
    else:
        print("Setting te proportional to density")

        while True:
            Te_x = eval(input("Maximum temperature [eV]:"))

            Ni_x = old_div(numpy.max(pressure),
                           (2. * Te_x * 1.602e-19 * 1.0e20))

            print("Maximum density [10^20 m^-3]:", Ni_x)

            Te = Te_x * pressure / numpy.max(pressure)
            Ni = Ni_x * pressure / numpy.max(pressure)
            if query_yes_no("Is this ok?") == 1: break
        Ti = Te
        Ti_x = Te_x

    rmag = numpy.max(numpy.abs(Rxy))
    print("Setting rmag = ", rmag)

    bmag = numpy.max(numpy.abs(Bxy))
    print("Setting bmag = ", bmag)

    #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
    # save to file
    # open a new netCDF file for writing.
    handle = file_open(output)

    print("Writing grid to file " + output)

    # Size of the grid

    s = file_write(handle, "nx", nx)
    s = file_write(handle, "ny", ny)

    # Topology for original scheme
    s = file_write(handle, "ixseps1", ixseps1)
    s = file_write(handle, "ixseps2", ixseps2)
    s = file_write(handle, "jyseps1_1", jyseps1_1)
    s = file_write(handle, "jyseps1_2", jyseps1_2)
    s = file_write(handle, "jyseps2_1", jyseps2_1)
    s = file_write(handle, "jyseps2_2", jyseps2_2)
    s = file_write(handle, "ny_inner", ny_inner)

    # Grid spacing

    s = file_write(handle, "dx", dx)
    s = file_write(handle, "dy", dy)

    s = file_write(handle, "ShiftAngle", qloop)
    s = file_write(handle, "zShift", qinty)
    s = file_write(handle, "pol_angle", pol_angle)
    s = file_write(handle, "ShiftTorsion", dqdpsi)

    s = file_write(handle, "Rxy", Rxy)
    s = file_write(handle, "Zxy", Zxy)
    s = file_write(handle, "Bpxy", Bpxy)
    s = file_write(handle, "Btxy", Btxy)
    s = file_write(handle, "Bxy", Bxy)
    s = file_write(handle, "hthe", hthe)
    s = file_write(handle, "sinty", sinty)
    s = file_write(handle, "psixy", psixy)

    # Topology for general configurations
    s = file_write(handle, "yup_xsplit", mesh.yup_xsplit)
    s = file_write(handle, "ydown_xsplit", mesh.ydown_xsplit)
    s = file_write(handle, "yup_xin", mesh.yup_xin)
    s = file_write(handle, "yup_xout", mesh.yup_xout)
    s = file_write(handle, "ydown_xin", mesh.ydown_xin)
    s = file_write(handle, "ydown_xout", mesh.ydown_xout)
    s = file_write(handle, "nrad", mesh.nrad)
    s = file_write(handle, "npol", mesh.npol)

    # plasma profiles

    s = file_write(handle, "pressure", pressure)
    s = file_write(handle, "Jpar0", jpar0)
    s = file_write(handle, "Ni0", Ni)
    s = file_write(handle, "Te0", Te)
    s = file_write(handle, "Ti0", Ti)

    s = file_write(handle, "Ni_x", Ni_x)
    s = file_write(handle, "Te_x", Te_x)
    s = file_write(handle, "Ti_x", Ti_x)
    s = file_write(handle, "bmag", bmag)
    s = file_write(handle, "rmag", rmag)

    # Curvature
    s = file_write(handle, "bxcvx", bxcvx)
    s = file_write(handle, "bxcvy", bxcvy)
    s = file_write(handle, "bxcvz", bxcvz)

    # Psi range
    s = file_write(handle, "psi_axis", mesh.faxis)
    psi_bndry = mesh.faxis + mesh.fnorm
    s = file_write(handle, "psi_bndry", psi_bndry)

    file_close, handle
    print("DONE")