コード例 #1
0
 def customMutation(self, ind, low=5, up=100, indpb=0.05):
     split = int(len(ind) / 2)
     half_ind_values = ind[:split]
     half_ind_presence = ind[split:]
     final_ind_values = tools.mutUniformInt(half_ind_values, low, up, indpb)
     final_ind_presences = tools.mutUniformInt(half_ind_presence, low, up,
                                               indpb)
     ind[:split], ind[split:] = final_ind_values[0], final_ind_presences[0]
     return ind,
コード例 #2
0
ファイル: run_ea.py プロジェクト: DeepakIngole/swmm_mpc
def mutate_pop(best_policy, nindividuals, n_controls):
    list_of_inds = []
    for i in range(nindividuals):
	# split because there may be more than one control
	split_lists = split_list(list(best_policy), n_controls)
	mutated_ind = []
	for l in split_lists:
	    l = l[1:]
            tools.mutUniformInt(l, 0, 10, 0.2)
            l.append(random.randint(0, 10))
	    mutated_ind.extend(l)
        if mutated_ind not in list_of_inds:
            list_of_inds.append(mutated_ind)
    return list_of_inds
コード例 #3
0
 def my_mutation(self,LL,UU,individual):
     t=self.t
     typeOfInput=len(t)
     individual_ = []
     for i in range(typeOfInput):
         if t[i] =='float':
             ind1=tools.mutPolynomialBounded([individual[i]], low=LL[i], up=UU[i], eta=20.0,indpb=1.0/len(self.t))
             individual_.append(ind1[0][0])
         elif t[i] =='int' or t[i]== 'bool':
             ind2=tools.mutUniformInt([individual[i]], low=LL[i], up=UU[i], indpb= 0.9)
             individual_.append(ind2[0][0])    
     return individual_
コード例 #4
0
ファイル: Experiment.py プロジェクト: zachmay/cs612-part2
    def __init__(self, runner):
        self.runner = runner
        self.toolbox = base.Toolbox()

        creator.create("FitnessMax", base.Fitness, weights=(1.0,))
        creator.create("Individual", list, fitness=creator.FitnessMax)

        self.populationSize = 50
        self.numberGenerations = 100
        self.crossoverProb = 0.5
        self.mutateProb = 0.1

        self.mate = tools.cxTwoPoint
        self.mutate = lambda individual: tools.mutUniformInt(individual, low=self.minInput, up=self.maxInput, indpb=0.05)
        self.select = lambda population, selectCount: tools.selTournament(population, selectCount, tournsize=3)

        self.toolbox.register("individual", self.individual)
        self.toolbox.register("population", self.population)
        self.toolbox.register("evaluate", self.evaluate)
        self.toolbox.register("mate", self.mate)
        self.toolbox.register("mutate", self.mutate)
        self.toolbox.register("select", self.select)
コード例 #5
0
ファイル: Experiment.py プロジェクト: zhaoshijian/cs612-part2
    def __init__(self, runner):
        self.runner = runner
        self.toolbox = base.Toolbox()

        creator.create("FitnessMax", base.Fitness, weights=(1.0, ))
        creator.create("Individual", list, fitness=creator.FitnessMax)

        self.populationSize = 50
        self.numberGenerations = 100
        self.crossoverProb = 0.5
        self.mutateProb = 0.1

        self.mate = tools.cxTwoPoint
        self.mutate = lambda individual: tools.mutUniformInt(
            individual, low=self.minInput, up=self.maxInput, indpb=0.05)
        self.select = lambda population, selectCount: tools.selTournament(
            population, selectCount, tournsize=3)

        self.toolbox.register("individual", self.individual)
        self.toolbox.register("population", self.population)
        self.toolbox.register("evaluate", self.evaluate)
        self.toolbox.register("mate", self.mate)
        self.toolbox.register("mutate", self.mutate)
        self.toolbox.register("select", self.select)
コード例 #6
0
            # else:
            #     job.types.append(furnace_id + '_heating')
            # entity_mgr.update(job)
            # product_id_list = job.product_id_list()
            # for product_id in product_id_list:
            #     product = entity_mgr.get(product_id)
            #     product.properties['report'][0]['equipment_id'] = furnace_id
            #     product.properties['report'][0]['start_time'] = None
            #     product.properties['report'][0]['end_time'] = None
        return furnace_schedule

    def score(self):
        E = self.simulator.total_results()
        T = self.simulator.total_time()
        T = (T - self.simulator.start_time).total_seconds()
        score = E * self.w1 + T * self.w2
        return score

    def get_total_weight(self):
        total = 0
        for j in self.job_list:
            weight = j['properties']['ingot']['current_weight']
            #weight = job.get_initial_weight(self.entity_mgr)
            total += weight
        return total

if __name__ == "__main__":
    for i in range(5):
        print(tools.mutUniformInt([4, 1], 0, 4, 1))
    tools.mutFlipBit(array('i', [4, 1, 2, 1, 1, 0, 2, 0, 2, 1, 4, 1, 4, 0, 3, 4, 0, 3, 3]), 1)
コード例 #7
0
for i in ind2:
    print(i)

#toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mate", tools.cxUniform, indpb=0.5)
#toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("mutate", tools.mutUniformInt, low=0, up=1, indpb=0.2)
#toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("select", tools.selNSGA2, nd="standard")

toolbox.register("evaluate", evalKnapsack)

##Mutation
mutant = toolbox.clone(ind1)
#ind2 = tools.mutGaussian(mutant, mu=0.0, sigma=0.2, indpb=0.2)
ind2, = tools.mutUniformInt(mutant, low=0, up=1, indpb=0.5)
del mutant.fitness.values
ind2
ind1
ind2.fitness.values = evalKnapsack(ind2)

ind2.fitness.values
ind1.fitness.values

##CROSSOVER
child1, child2 = [toolbox.clone(ind) for ind in (ind1, ind2)]
tools.cxUniform(child1, child2, 0.5)
#tools.cxSimulatedBinary(child1, child2,0.5)

#tools.cxPartialyMatched(child1, child2)
del child1.fitness.values
コード例 #8
0
def mutate(ind, low, up):
    return tools.mutUniformInt(ind, low=low, up=up, indpb=0.5)
コード例 #9
0
def main():
    random.seed(64)
    pop = toolbox.population(n=3000)
    CXPB, MUTPB = 0.5, 0.2

    print("Start of evolution")

    fitnesses = list(map(toolbox.evaluate, pop))
    for ind, fit in zip(pop, fitnesses):
        ind.fitness.values = fit

    print("  Evaluated %i individuals" % len(pop))

    # fits = [ind.fitness.values[0] for ind in pop]
    g = 0
    while g < 50:
        g = g + 1
        print("Generation %i" % g)
        offspring = toolbox.select(pop, len(pop))
        # print("selected individuals %i" % len(offspring))
        offspring = list(map(toolbox.clone, offspring))

        for child1, child2 in zip(offspring[::2], offspring[1::2]):

            if random.random() < CXPB:
                # tools.cxOnePoint(child1, child2)
                tools.cxTwoPoint(child1, child2)
                # tools.cxUniform(child1, child2, indpb=0.01)
                del child1.fitness.values
                del child2.fitness.values

        for mutant in offspring:
            if random.random() < MUTPB:
                # tools.mutGaussian(mutant,1,1, indpb=0.01)
                # tools.mutFlipBit(mutant, indpb=0.01)
                tools.mutUniformInt(mutant, 0, 150, indpb=0.02)
                del mutant.fitness.values

        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        print("  Evaluated %i individuals" % len(invalid_ind))

        # G=1
        pop[:] = offspring

        fits = [ind.fitness.values[0] for ind in pop]

        length = len(pop)
        mean = sum(fits) / length
        sum2 = sum(x * x for x in fits)
        std = abs(sum2 / length - mean ** 2) ** 0.5

        min_fitness.append(min(fits))
        max_fitness.append(max(fits))
        mean_fitness.append(mean)
        std_fitness.append(std)

        print("  Minimum fitness %s" % min(fits))
        print("  Maximum fitness %s" % max(fits))
        print("  Avg fitness %s" % mean)
        print("  Std deviation %s" % std)

    best_ind = tools.selBest(pop, 1)[0]
    print("Best individual is %s, %s" % (best_ind, best_ind.fitness.values))
    for index in range(0, len(best_ind)):
        print("Station %i location x--> %i y--> %i" % (
        index + 1, int(data[best_ind[index]][0]), int(data[best_ind[index]][1])))
コード例 #10
0
def mutacion(seleccionados, tasa_mutacion=0.01):
    for n, individuo in enumerate(seleccionados):
        seleccionados[n] = mutUniformInt(individuo, 0, 10, tasa_mutacion)[0]
    return seleccionados
コード例 #11
0
    if SEL == 'SLR':  #Selecting 10 random candidates
        Temp_pop = tools.selRandom(Temp_pop, 10)
    if SEL == 'SLM':  #Selecting 8 best and 2 random candidates
        BestMatingCandidates = tools.selBest(Temp_pop, 8, fit_attr='fitness')
        BestMates = list(map(toolbox.clone, BestMatingCandidates))
        RandomMatingCandidates = tools.selRandom(Temp_pop, 2)
        RandomMates = list(map(toolbox.clone, RandomMatingCandidates))
        Temp_pop = BestMates + RandomMates
#Now we can begin the mating
    for child1, child2 in zip(Temp_pop[::2],
                              Temp_pop[1::2]):  #Mating selected candidates
        if random.random() < CXPB:  #Mating happens with probability
            toolbox.mate(child1, child2)
    for mutant in Temp_pop:  #Mutating based on settings
        if MUT == 'MUF':
            tools.mutUniformInt(mutant, 1, 5, MUTPB)
        if MUT == 'MCP':
            EA_Utilities.mutRsCreepInt(mutant, -1, 1, MUTPB)
        if MUT == 'MGS':
            EA_Utilities.mutRsGaussianInt(mutant, 0.1, MUTPB)
#Now here is the bit: We want to see how generation improves over time. No penalty for querying FRT
    generation_fitness = list(map(toolbox.evaluate_generation, Temp_pop))
    for ind, fit in zip(Temp_pop, generation_fitness):
        ind.fitness.values = fit
        Generation.append(fit[0])
    Avg_Generation_F = sum(Generation) / len(Generation)
    Max_Generation_F = max(Generation)
    Min_Generation_F = min(Generation)
    for ind in Temp_pop:  #We don't want to fill our population with identical points
        if EA_Utilities.CachingTest(cache, ind) == False:
            pop.append(ind)
コード例 #12
0
ind2 = random.sample(range(10), 10)

tools.cxTwoPoint(ind1, ind2)
ind = [ind1, ind2]

tools.cxOrdered(ind1, ind2)

for i in range(100):
    ind1 = random.sample(range(10), 10)
    ind2 = random.sample(range(10), 10)
    tools.mutShuffleIndexes(ind1, 1)
    print(ind1)

for i in range(100):
    ind1 = random.sample(range(10), 10)
    tools.mutUniformInt(ind1, 20, 100, 1)
    print(ind1)

for i in range(100):
    ind1 = random.sample(range(100), 10)
    ind2 = random.sample(range(100), 10)
    tools.cxPartialyMatched(ind1, ind2)
    print(ind1)
    print(ind2)
    print(len(set(ind1)), len(set(ind2)))

while True:
    ind1 = random.sample(range(100), 10)
    ind2 = random.sample(range(100), 10)
    # print(ind1, ind2)
    # print(len(set(ind1)), len(set(ind2)))
コード例 #13
0
ファイル: mastermind-ga.py プロジェクト: meukh/ga-mastermind
def mutUniformFP(guess):
    return tools.mutUniformInt(guess,
                               low=0,
                               up=NB_COLORS - 1,
                               indpb=guess.fitness.values[0] / NB_SLOTS)