def display_history_graph(self, historyDict, numberOfEpochs): print(numberOfEpochs) if numberOfEpochs is not None: xAxis = list(range(0, numberOfEpochs)) core.add_line_series(self.plotName, "Dokladnosc", xAxis, historyDict.history['accuracy']) print(historyDict.history['accuracy']) core.add_line_series(self.plotName, "Strata", xAxis, historyDict.history['loss']) print(historyDict.history['loss'])
def display_history_graph(self, historyDict, numberOfEpochs): with simple.window(self.learningGraph, width=300, height=300): core.add_separator() core.add_plot(self.historyPlotName) xAxis = range(0, numberOfEpochs) core.add_line_series(self.historyPlotName, "Dokładnosc", xAxis, historyDict['accuracy']) core.add_line_series(self.historyPlotName, "Strata", xAxis, historyDict['loss'])
def create(sender, data): core.set_value("company_id", "{} Model Created".format(model_company.split('_')[0])) core.clear_plot("Pred") predict, original = data core.add_line_series("Pred", "Prediction", predict.index.tolist(), predict[0].tolist(), color=[255, 50, 50, 100])
def create_model(sender, data): predict, original = model.create_model(model_company) print(predict.index) print(predict[0]) print(type(predict.index)) print(type(predict[0])) core.add_line_series("Pred", "Prediction", predict.index.tolist(), predict[0].tolist(), color=[255, 50, 50, 100])
def __init__(self, label): self.data = [] self.labels = [] self.plot_label = "##" + label self.chart = lambda: core.add_line_series( self.plot_label, label, y=self.data, x=self.labels, weight=2, color=[0, 0, 255, 100], )
def plot_callback(sender, data): if data == "clear": selected_companies.clear() elif data != None: if data not in selected_companies: selected_companies.append(data) else: selected_companies.remove(data) core.clear_plot("Plot") cap_callback(None, selected_cap) for i in range(0, len(selected_companies)): company = selected_companies[i] stocks = pd.read_csv("dataset/" + company) data_x = list(range(1, len(stocks.index) + 1)) data_y = stocks['High'].tolist() core.add_line_series("Plot", company.split('_')[0], data_x, data_y, color=colors[i % len(colors)])
def cap_callback(sender, data): global selected_cap selected_cap = data core.clear_plot("Cap") for i in range(0, len(selected_companies)): company = selected_companies[i] stocks = pd.read_csv("dataset/" + company, parse_dates=['Date']) stocks['Date'] = pd.to_datetime(stocks['Date'], unit='D', errors='coerce') if data == "daily": data_x = list(range(1, len(stocks.index) + 1)) data_y = (stocks['High'] * stocks['Volume']).tolist() core.add_line_series("Cap", company.split('_')[0], data_x, data_y, color=colors[i % len(colors)]) core.add_line_series("Cap", "large-cap", [data_x[0], data_x[-1]], [10000000000, 10000000000], weight=3, color=[255, 50, 50, 100]) core.add_line_series("Cap", "mid-cap", [data_x[0], data_x[-1]], [2000000000, 2000000000], weight=3, color=[200, 50, 50, 100]) core.add_line_series("Cap", "small-cap", [data_x[0], data_x[-1]], [300000000, 300000000], weight=3, color=[150, 50, 50, 100]) elif data == "monthly": monthly_stocks = stocks.groupby(pd.Grouper(key="Date", freq='1M')).mean() data_x = list(range(1, len(monthly_stocks.index) + 1)) data_y = (monthly_stocks['High'] * monthly_stocks['Volume']).tolist() core.add_line_series("Cap", company.split('_')[0], data_x, data_y, color=colors[i % len(colors)]) core.add_line_series("Cap", "large-cap", [data_x[0], data_x[-1]], [10000000000, 10000000000], weight=3, color=[255, 50, 50, 100]) core.add_line_series("Cap", "mid-cap", [data_x[0], data_x[-1]], [2000000000, 2000000000], weight=3, color=[200, 50, 50, 100]) core.add_line_series("Cap", "small-cap", [data_x[0], data_x[-1]], [300000000, 300000000], weight=3, color=[150, 50, 50, 100]) elif data == "quarterly": quarterly_stocks = stocks.groupby(pd.Grouper(key="Date", freq='3M')).mean() data_x = list(range(1, len(quarterly_stocks.index) + 1)) data_y = (quarterly_stocks['High'] * quarterly_stocks['Volume']).tolist() core.add_line_series("Cap", company.split('_')[0], data_x, data_y, color=colors[i % len(colors)]) core.add_line_series("Cap", "large-cap", [data_x[0], data_x[-1]], [10000000000, 10000000000], weight=3, color=[255, 50, 50, 100]) core.add_line_series("Cap", "mid-cap", [data_x[0], data_x[-1]], [2000000000, 2000000000], weight=3, color=[200, 50, 50, 100]) core.add_line_series("Cap", "small-cap", [data_x[0], data_x[-1]], [300000000, 300000000], weight=3, color=[150, 50, 50, 100]) elif data == "yearly": yearly_stocks = stocks.groupby(pd.Grouper(key="Date", freq='1Y')).mean() data_x = list(range(1, len(yearly_stocks.index) + 1)) data_y = (yearly_stocks['High'] * yearly_stocks['Volume']).tolist() core.add_line_series("Cap", company.split('_')[0], data_x, data_y, color=colors[i % len(colors)]) core.add_line_series("Cap", "large-cap", [data_x[0], data_x[-1]], [10000000000, 10000000000], weight=3, color=[255, 50, 50, 100]) core.add_line_series("Cap", "mid-cap", [data_x[0], data_x[-1]], [2000000000, 2000000000], weight=3, color=[200, 50, 50, 100]) core.add_line_series("Cap", "small-cap", [data_x[0], data_x[-1]], [300000000, 300000000], weight=3, color=[150, 50, 50, 100])