コード例 #1
0
def compare(batch_size, input_dir, output_dir):
    data = load_images(input_dir, batch_size)
    y_test, x_test = data['B'], data['A']
    weights = [
        'generator.h5', 'weights/DIV2K_1/generator_3_374.h5',
        'weights/DIV2K_2/generator_3_507.h5'
    ]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    generated = []
    for weight in weights:
        g = generator_model()
        g.load_weights(weight)
        generated_images = g.predict(x=x_test, batch_size=batch_size)
        generated.append([deprocess_image(img) for img in generated_images])
    generated = np.array(generated)
    x_test = deprocess_image(x_test)
    y_test = deprocess_image(y_test)

    for i in range(generated_images.shape[0]):
        y = y_test[i, :, :, :]
        x = x_test[i, :, :, :]
        img_0 = generated[0, i, :, :, :]  # original
        img_1 = generated[1, i, :, :, :]  # trainsfer learning
        img_2 = generated[
            2, i, :, :, :]  # trainsfer learning with locked parameters

        # combine imgs and store
        output = np.concatenate((y, x, img_0, img_1, img_2), axis=1)
        im = Image.fromarray(output.astype(np.uint8))
        im.save(os.path.join(output_dir, 'results{}.png'.format(i)))
コード例 #2
0
def deblur(weight_path, input_dir, output_dir):
    g = generator_model()
    g.load_weights(weight_path)
    for image_name in os.listdir(input_dir):
        # test = cv2.imread(input_dir+image_name)
        # img_original = load_image(os.path.join(input_dir, image_name))
        # img_original.show()
        img_tif = cv2.imread(input_dir + image_name)
        #img_tif = cv2.resize(img_tif,(256, 256))
        #img_tif_2 = Image.fromarray(img_tif)
        #img_tif.show()
        #image = np.array([preprocess_image(load_image(os.path.join(input_dir, image_name)))])
        image = np.array([preprocess_image_no_resize(img_tif)])
        x_test = image
        generated_images = g.predict(x=x_test)
        generated = np.array(
            [deprocess_image(img) for img in generated_images])
        x_test = deprocess_image(x_test)
        for i in range(generated_images.shape[0]):
            x = x_test[i, :, :, :]
            img = generated[i, :, :, :]

            plt.figure()
            plt.imshow(img)
            plt.show()

            #output = np.concatenate((x, img), axis=1)
            img_gen = Image.fromarray(img.astype(np.uint8))
            img_gen.show()
            #im = Image.fromarray(output.astype(np.uint8))
            img_gen.save(os.path.join(output_dir, image_name))
            print("ok")
コード例 #3
0
def test(batch_size):
    data = load_images('./images/test', batch_size)
    y_test, x_test = data['B'], data['A']
    g = generator_model()
    g.load_weights('generator.h5')
    generated_images = g.predict(x=x_test, batch_size=batch_size)
    generated = np.array([deprocess_image(img) for img in generated_images])
    x_test = deprocess_image(x_test)
    y_test = deprocess_image(y_test)

    acc = 0

    for i in range(generated_images.shape[0]):
        y = y_test[i, :, :, :]
        x = x_test[i, :, :, :]
        img = generated[i, :, :, :]
        mse = np.sum(
            (y - img)**(2)) / (generated.shape[1] * generated.shape[2] *
                               generated.shape[3])
        psnr = 10 * math.log10((255**2) / mse)
        acc = acc + psnr
        output = np.concatenate((y, x, img), axis=1)
        im = Image.fromarray(output.astype(np.uint8))
        im.save('results{}.png'.format(i))

    final_acc = acc / (generated_images.shape[0])
    print('test accuracy', final_acc)
コード例 #4
0
def deblur(weight_path, input_dir, output_dir):
    g = generator_model()
    g.load_weights(weight_path)
    for image_name in os.listdir(input_dir):
        image = np.array([preprocess_image(load_image(os.path.join(input_dir, image_name)))])
        x_test = image
        generated_images = g.predict(x=x_test)
        generated = np.array([deprocess_image(img) for img in generated_images])
        x_test = deprocess_image(x_test)
        for i in range(generated_images.shape[0]):
            x = x_test[i, :, :, :]
            img = generated[i, :, :, :]
            output = np.concatenate((x, img), axis=1)
            im = Image.fromarray(output.astype(np.uint8))
            im.save(os.path.join(output_dir, image_name))
コード例 #5
0
ファイル: test.py プロジェクト: hvloc15/deblur-gan
def test(batch_size):
    data = load_images('./images/test', batch_size)
    y_test, x_test = data['B'], data['A']
    g = generator_model()
    g.load_weights('generator.h5')
    generated_images = g.predict(x=x_test, batch_size=batch_size)
    generated = np.array([deprocess_image(img) for img in generated_images])
    x_test = deprocess_image(x_test)
    y_test = deprocess_image(y_test)

    for i in range(generated_images.shape[0]):
        y = y_test[i, :, :, :]
        x = x_test[i, :, :, :]
        img = generated[i, :, :, :]
        output = np.concatenate((y, x, img), axis=1)
        im = Image.fromarray(output.astype(np.uint8))
        im.save('results{}.png'.format(i))
コード例 #6
0
ファイル: deblur_image.py プロジェクト: hvloc15/deblur-gan
def deblur(image_path):
    data = {
        'A_paths': [image_path],
        'A': np.array([preprocess_image(load_image(image_path))])
    }
    x_test = data['A']
    g = generator_model()
    g.load_weights('generator.h5')
    generated_images = g.predict(x=x_test)
    generated = np.array([deprocess_image(img) for img in generated_images])
    x_test = deprocess_image(x_test)

    for i in range(generated_images.shape[0]):
        x = x_test[i, :, :, :]
        img = generated[i, :, :, :]
        output = np.concatenate((x, img), axis=1)
        im = Image.fromarray(output.astype(np.uint8))
        im.save('deblur'+image_path)
コード例 #7
0
 def deblurOne(self, imageByte: bytes):
     image = np.array([preprocess_image(Image.open(io.BytesIO(imageByte)))])
     try:
         image = np.delete(image, 3, 3)
     except:
         pass
     x_test = image
     with self.graph.as_default():
         generated_images = self.g.predict(x=x_test)
     generated = np.array([deprocess_image(img) for img in generated_images])
     x_test = deprocess_image(x_test)
     for i in range(generated_images.shape[0]):
         img = generated[i, :, :, :]
         im = Image.fromarray(img.astype(np.uint8))
         output = io.BytesIO()
         im.save(output, format="JPEG")
         output.seek(0)
         return output
コード例 #8
0
def DeBlur_GAN_Decomposition():
    st.subheader("GAN based Blur removal")
    g = generator_model()
    g.load_weights(dblur_weight_path)
    img_file_buffer = st.file_uploader("Upload an image",
                                       type=["jpg"])  #"png", "jpg", "jpeg",
    if img_file_buffer is not None:
        sample_image = Image.open(img_file_buffer)
        image_resize = sample_image.resize((256, 256))
        #st.write(type(image_resize), image_resize.size)
        image_in = np.array([preprocess_image(image_resize)])
        #st.write(image_in.shape)
        x_test = image_in
        generated_images = g.predict(x=x_test)
        generated = np.array(
            [deprocess_image(img) for img in generated_images])
        x_test = deprocess_image(x_test)
        #st.write("generated images size:", generated_images.shape)
        for i in range(generated_images.shape[0]):
            x = x_test[i, :, :, :]
            img = generated[i, :, :, :]
            #output = np.concatenate((x, img), axis=1)
            im = Image.fromarray(img.astype(np.uint8))

        with st.spinner('Enhancing Image...'):
            # Display
            plt.figure(figsize=(25, 20))
            plt.subplot(121)
            plt.title('Original Image')
            plt.axis('off')
            plt.imshow(image_resize)

            plt.subplot(122)
            plt.title('Final Image')
            plt.axis('off')
            plt.imshow(im)
            st.pyplot()
            time.sleep(10)
コード例 #9
0
def deblur(weight_path, input_dir, output_dir):
    g = generator_model()
    g.load_weights(weight_path)
    lst_grap_img = []
    lst_crop_img = []
    count = 0
    for image_name in os.listdir(input_dir):
        path_in = input_dir + "/" + image_name  # path image input
        path_out = output_dir + "/" + image_name  # path image output
        image_blur = cv2.imread(path_in)  # read image
        img_add_padding = add_padding(image_blur)  # add padding image % 256
        lst_crop_img = crop_image(
            img_add_padding)  # crop image size(256 x 256)
        for crop in range(len(lst_crop_img)):
            image_preprocess = np.array(lst_crop_img[crop])
            image_swap = (image_preprocess - 127.5) / 127.5
            image = np.array([image_swap])
            x_test = image
            generator_images = g.predict(x=x_test)
            generator = np.array(
                [deprocess_image(img) for img in generator_images])
            x_test = deprocess_image(x_test)

            for i in range(generator_images.shape[0]):
                x = x_test[i, :, :, :]
                img = generator[i, :, :, :]
                im = Image.fromarray(img.astype(np.uint8))
                im_np = np.asarray(im)
                lst_grap_img.append(im_np)
                #im.save(os.path.join(output_dir, image_name))
        img_sharp = graph_image(lst_grap_img, img_add_padding)
        cv2.imwrite(path_out, img_sharp)
        count += 1
        print("done", count / len(os.listdir(input_dir)))
        lst_grap_img.clear()
        lst_crop_img.clear()
コード例 #10
0
ファイル: test.py プロジェクト: wewan/deblur-gan
def test(batch_size):
    data = load_images('../images/test', 300)
    y_test, x_test = data['B'], data['A']
    g = generator_model()
    # g.load_weights('./weights/331/generator_3_1538.h5')
    # g.load_weights('./weights_hard/331/generator_3_1746.h5')
    g.load_weights('../generator4-40.h5')
    # g.load_weights('../deblur-40.h5')

    # im1 = tf.decode_png('../images/test/A/GOPR0384_11_00_000001.png')
    # im2 = tf.decode_png('../images/test/B/GOPR0384_11_00_000001.png')
    # ssim = tf.image.ssim(im1, im2, max_val=255)
    # print(ssim)
    psnr = 0
    ssim = 0
    # with tf.Session() as sess:
    #     sess.run(tf.initialize_all_variables())
    for index in tqdm.tqdm(range(int(300 / batch_size))):
        batch_test = x_test[index * batch_size:(index + 1) * batch_size]
        batch_label = y_test[index * batch_size:(index + 1) * batch_size]

        generated_images = g.predict(x=batch_test, batch_size=batch_size)
        generated = np.array(
            [deprocess_image(img) for img in generated_images])
        batch_test = deprocess_image(batch_test)
        batch_label = deprocess_image(batch_label)

        # for i in range(generated_images.shape[0]):
        #     y = batch_label[i, :, :, :]
        #     x = batch_test[i, :, :, :]
        #     img = generated[i, :, :, :]
        #     with tf.Session() as sess:
        #         sess.run(tf.initialize_all_variables())
        #        yy = tf.convert_to_tensor(y, dtype=tf.float32)
        #        imgimg = tf.convert_to_tensor(img, dtype=tf.float32)
        #        # ssim = tf.image.ssim(yy, imgimg, max_val=255)
        #        # psnr = tf.image.psnr(yy,imgimg,max_val=255)
        #        # sess.run(psnr)
        #        ssim += sess.run(tf.image.ssim(yy, imgimg, max_val=255))
        #        pp += sess.run(tf.image.psnr(yy,imgimg,max_val=255))
        #         # print(sim)

        # for i in range(generated_images.shape[0]):
        #    y = batch_label[i, :, :, :]
        #    x = batch_test[i, :, :, :]
        #    img = generated[i, :, :, :]
        with tf.Session() as sess:
            sess.run(tf.initialize_all_variables())
            yy = tf.convert_to_tensor(batch_label, dtype=tf.float32)
            imgimg = tf.convert_to_tensor(generated, dtype=tf.float32)
            # ssim = tf.image.ssim(yy, imgimg, max_val=255)
            # psnr = tf.image.psnr(yy,imgimg,max_val=255)
            # sess.run(psnr)
            ss = sess.run(tf.image.ssim(yy, imgimg, max_val=255))
            ssim += np.mean(ss)
            pp = sess.run(tf.image.psnr(yy, imgimg, max_val=255))
            psnr += np.mean(pp)
            # print(sim
            # print(ssim)
            # print(psnr)
            # yy= np.transpose(y[np.newaxis,...],(0,3,1,2))
            # imgimg = np.transpose(img[np.newaxis,...],(0,3,1,2))
            # psnr += PSNR(y,img)
            # print(psnr)
            # ssim += SSIM(yy,imgimg)

            # output = np.concatenate((y, x, img), axis=1)
            # im = Image.fromarray(output.astype(np.uint8))
            # im.save('results{}.png'.format(i))
    num = int(300 / batch_size)
    print(psnr / num)
    # print(pp/300)
    print(ssim / num)